
RAdaptSQ: Real-Time AI-Planning

and Environment-Aware Self-Adaptation to Optimize Security and QoS

Lin Cui

lin.cui@kit.edu
Karlsruhe Institute of Technology (KIT)

Raffaela Mirandola

raffaela.mirandola@kit.edu
Karlsruhe Institute of Technology (KIT)

Abstract
Microservice applications’ dynamism expands the attack
surface and causes security drift, rendering static security
controls ineffective. Existing self-adaptive systems rarely
tackle these dynamic security challenges. To address
this, this paper provides the conceptual framework of
RAdaptSQ, a real-time AI planning-driven self-adaptive
system. It enhances the MAPE-K (Monitor, Analyze,
Plan, Execute, Knowledge) loop with a Planning Domain
Definition Language (PDDL)-based adversarial domain
and dynamic security assessment. It adapts microservices
to evolving threats while preserving Quality of Service.

Index terms—MAPE-K loop, self-adaptive system,
microservice application security

1 Introduction
Microservice-based Applications (Apps) improve mod-
ularity by decomposing monolithic functionality into
independent, single-purpose services. This simplifies
updating, scheduling, and scaling and allows integration
of services from different providers. Consequently,
microservices have been widely adopted across industries:
a Gartner (2023) survey found that 74% of respondents
already use a microservices architecture, while the re-
maining 23% plan to [7]. However, a single microservice
may be updated independently 10–100 times per day
[9]. The attack surface of microservice-based Apps can
thus fluctuate rapidly, causing critical issues such as
security drift, where static security controls with fixed
strategies become outdated and ineffective shortly after
deployment. It is of an urgent need to equip microservice-
based applications with adaptable, long-lived security
mechanisms that can continuously safeguard these Apps
against changing attack surfaces and evolving threats.

Traditional static methods are obviously inadequate
for handling such dynamic changes at runtime. For exam-
ple, Palladio-based approaches provide powerful security
modeling capabilities, but they are primarily focused on
the design time [6]. Similarly, Attack Trees (ATs) [4] are
widely used offline to model and assess system security
statically. Even so, they lack support for partial updates
during runtime, limiting their applicability in systems
with rapidly changing runtime conditions. Self-adaptive
systems (SASs) [5] can autonomously adjust to system
and environment changes because they combine a
managed system that provides core functionality and
a managing system that monitors and adapts it. The

managing system typically uses a MAPE-K feedback
loop [5] to achieve adaptation goals with minimal human
intervention. AQUA [8] is the first to make security
enhancement an adaptation objective for microservices
Apps by integrating dynamic security assessment into
an adaptive MAPE-K loop. However, AQUA’s security
assessment is performed offline and remains static at
runtime, so it cannot handle fluctuating attack surfaces.
Therefore, to enable a MAPE-K loop that both enforces
security thresholds while maintains acceptable QoS for
Apps at runtime, there are two major challenges:

• C1 (Modeling): How to efficiently model a
microservice app’s internal system and external
environment within the Knowledge module, so that
the model can update in a timely manner to reflect
changes and consistently represent the system’s
latest runtime state?

• C2 (Dynamic assessment): How can the
MAPE-K loop dynamically assess the runtime
security of the system based on the latest internal
and external states while meeting the stringent time
requirements of microservice environments?

In this paper, jointly addressing the above challenges,
we present a conceptual framework of RAdaptSQ: a
real-time AI-planning-driven and environment-aware
self-adaptive system. Based on the observations collected
by Monitor, RAdaptSQ maintains a Planning Domain
Definition Language (PDDL)-specified Adversarial
Environment Domain (AED) in the Knowledge module,
which can be continuously updated through the MAPE-K
loop during runtime to reflect the latest system and
environment states (C1). Additionally, upon the most
recent context, RAdaptSQ performs Environmental-
Aware Dynamic Security Assessment (EADSA) during
the analysis phase (C2). By continuously selecting and
applying optimal adaptations, RAdaptSQ dynamically
adapts the managed microservice app to evolving attack
surfaces while ensuring acceptable QoS at runtime.
The rest of this paper is organized as follows: Section
2 introduces the preliminaries; Section 3 presents
RAdaptSQ’s conceptual framework; Section 4 describes
the evaluation plan; and Section 5 concludes.

2 Preliminaries
AI Planning and PDDL. AI planning, a key area of
Artificial Intelligence (AI), focuses on automatically gener-
ating action sequences (plans) to solve planning problems



[2]. The PDDL standardizes problem description via two
files: (a) The domain file, which defines the environment
model by specifying types, predicates and actions. Pred-
icates are Boolean relations describing state properties.
Action templates include parameters, preconditions (con-
junctions of predicates that must hold), and effects (pred-
icate additions or deletions resulting from execution); (b)
The problem file, which instantiates the domain for a spe-
cific scenario. It lists concrete objects, specifies the initial
state as a set of grounded predicates, and goal states to be
reached. A PDDL planner is the agent that receives these
files as input and searches for an action sequence that
transforms the initial state into one satisfying the goal.

Discrete-Time Markov Chains. Discrete-Time
Markov Chains (DTMCs) [1] model systems with
probabilistic state transitions over discrete time steps. A
DTMC is a tuple M=(S,s0,P,L), where S is a finite set
of states, s0∈S the initial state, P :S×S→ [0,1] the tran-
sition probability matrix with

∑
s′∈SP(s,s

′)=1 for all
s∈S, and L :S→2AP labels states with subsets of atomic
propositions AP . For a microservice application, states S
include: (a) entry points (s0), (b) microservices, and (c)
terminal outcomes, while transitions P represent API-call
dependencies among the microservices. To capture
non-functional properties such as availability, response
time, and security, DTMCs are typically extended with
a reward structure r=(rs,ra), where rs :S→R≥0 and
ra :S×S→R≥0 assign non-negative rewards to states
and transitions, respectively. In practice, DTMC models
are built manually or derived from execution traces,
with initial transition probabilities based on benchmark
availability and updated online via the MAPE-K loop [8].

3 Conceptual Framework
This section outlines RAdaptSQ’s conceptual framework
(Figure 1), which comprises two main stages:

S1: Offline stage (C1& C2). In this stage, we ana-
lyze the managed application, and define and specify the
models of the managed application and its environment
in the Knowledge module before deployment. Specifically,
we define the managed application’s endogenous con-
figuration and exogenous environment as the AED and
its Adversarial Environment Domain Instance (AEDI)
by taking advantages of AI planning. The AED defines
the general schema encompassing entity types, states,
relationships, numeric attributes and atomic actions. The
AEDI instantiates these schema elements with concrete
objects and values to capture the application’s state at
a specific time point and specifies goal states for security
analysis. Using PDDL 2.1 syntax [2], the initial versions
of the AED and AEDI are specified in the domain and
problem files, respectively, with the initial settings and
values. Figure 1 shows a concise depiction of AED and
AEDI. Additionally, by following AQUA [8], we specify
a DTMC runtime model to represent the managed
application’s probabilistic behavior during execution.

S2: Runtime management. In this stage, the
enhanced MAPE-K feedback loop continuously optimizes
the managed application by selecting and applying

optimal adaptation options to ensure security and
maintain acceptable QoS. Specifically, RAdaptSQ’s
MAPE-K self-adaptive loop operates as follows:

• K (C1): To reflect the highly dynamic microservice
application and its external evolving environment,
RAdaptSQ’s Knowledge module maintains the AED
and its AEDI with the latest observations. After
the initial version of AED and ADEI are specified
and stored in the Knowledge module offline, they
are periodically and partially updated at runtime
according to the fluctuations of both endogenous
system and exogenous environment detected by the
Monitor module. In addition, the DTMC model is
also updated with the latest observation.

• M (C1 & C2): To support these updates,
RAdaptSQ’s Monitor not only periodically and
asynchronously collects (a) configuration snapshots,
(b) runtime snapshots, and (c) security settings, but
also integrates a web crawler to continuously extract
and pipe required relevant Threat Intelligence (TI)
from the Internet, such as Common Vulnerabilities
and Exposures (CVE) data and behavioral statistics
in threat scenarios, into the Knowledge module.

• A (C2): RAdaptSQ’s Analyzer is responsible for
spotting the changes from the latest observations
collected by the Monitor and partially updating
the corresponding specifications in the domain or
problem files accordingly. To enable runtime self-
adaptation, upon having the updated AED and
AEDI, RAdaptSQ’s Analyzer is specifically embed-
ded with an AI planning-driven EASDA method to
dynamically prepare security risk scores for available
adaptation candidates in near real-time. Specifically,
to assess the security risk of available options, we in-
tegrate the strengths of Attack Path (AP) models [4]
for attack vector visualization and risk assessment
with the capabilities of AI planners for adaptive,
real-time attack path planning, formulating the AP
generation as an Environment-Aware Attack Path
Planning Problem (pAP ) based on AED and its
AEDI, where each AP is a sequence composed of
step-wise atomic actions that transform from the sys-
tem ground state at a given time into the designated
compromised state. By specifying six pAP instances,
each targeting a goal state corresponding to one of
the STRIDE categories: Spoofing, Tampering, Re-
pudiation, Information Disclosure, Denial of Service,
and Elevation of Privilege, six independent PDDLAI
planners solve these problems and generate six risk-
maximizing APs in a parallel way. The final security
risk is quantified as a weighted sum of the six individ-
ual risk scores. Each score on one AP is calculated
as the product of: (a) the product of per-step success
probabilities along the AP and (b) the critical impact
of the vulnerability exploited in the AP. Upon prepar-
ing the available implementation options along with
their associated security risk scores and QoS metrics,
RAdaptSQ’s Analyzer conveys this information to
the Planner via the Knowledge module.



Figure 1: The conceptual framework of RAdaptSQ.

• P: Upon invocation, RAdaptSQ’s Planner retrieves
the available implementation options with their
associated metrics from the Knowledge module. It
then selects the optimal option by simulating the
execution of managed microservice application over
a finite horizon by running its DTMC model on
PRISM [3] probabilistic model checker. A long-term
reward is accumulated to quantitatively evaluate
and compare the effectiveness of each option. Once
the decision is made, the Executor is triggered to
apply the selected option.

4 Evaluation Plan
To comprehensively verify RAdaptSQ’s performance, we
design three research questions: RQ1 (Effectiveness
without runtime change), RQ2 (Effectiveness un-
der runtimes change), RQ3 (Scalability). The ex-
periments will be conducted on two case applications,
each comprising 4–6 microservices. Primary metrics are
average wall-clock time and cumulative long-term reward
(quantifies the expected long-term benefit of an adapta-
tion), measured from adaptation onset to the Planner’s
decision, averaged over 10 identical runs. For RQ1, we
compare RAdaptSQ with AQUA prior baselines [8], plus
ablation variants of RAdaptSQ, in both cases. Each case
comprises 5–6 scenarios varying: (1) configuration of the
managed system (deployed microservices and available
instances); (2) QoS level for each instance (availability,
response time); and (c) vulnerability list per service imple-
mentation. ForRQ2, we compare RAdaptSQ and AQUA
in both cases under 3–5 runtime changes in configuration
or environment to show RAdaptSQ’s advantage in dy-
namic risk scoring versus AQUA’s static offline approach.
RQ3 reuses RQ1’s baselines on case one. We respectively
measure offline (definition & specification) and runtime
(AP planning & dynamic assessing & adaptation decision
making) wall-clock time costs of all baselines by varying
the vulnerability number of each service implementation
and composed microservice number of an App. All ex-
periments replicate identical operating conditions and
analyse adaptation decisions at the plan component level.

5 Conclusion
To tackle the changing attack surface and evolving threat
faced by dynamic microservice-based applications, this

paper presents a conceptual framework of RAdaptSQ:
a real-time AI planning-driven and environment-aware
self-adaptive system. RAdaptSQ automatically adapts
the managed microservice application to changing attack
surfaces, while continuously optimizing their security
and ensuring acceptable QoS at runtime. Although
RAdaptSQ’s Monitor module can capture CVE and
limited behavioral statics from the Internet threat intelli-
gence, large-scale and information-rich TI remains under-
utilized. Future work aims to develop an SAS-compliant
mechanism for automated TI extraction and correlation
analysis to better handle evolving attack surfaces.

References

[1] J. R. Norris. Markov Chains. Cambridge Series
in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 1998.

[2] M. Fox and D. Long. “PDDL2. 1: An extension
to PDDL for expressing temporal planning do-
mains”. In: Journal of artificial intelligence research
20 (2003), pp. 61–124.

[3] M. Kwiatkowska, G. Norman, and D. Parker.
“PRISM 4.0: Verification of probabilistic real-time
systems”. In: International conference on computer
aided verification. Springer. 2011, pp. 585–591.

[4] A. Shostack. Threat modeling: Designing for security.
John wiley & sons, 2014.

[5] D. Weyns. An introduction to self-adaptive systems:
A contemporary software engineering perspective.
John Wiley & Sons, 2020.

[6] S. Seifermann et al. “Identifying confidentiality vi-
olations in architectural design using palladio”. In:
ECSA-C202021 2978 (2021).

[7] Gartner Peer Community. Microservices Architec-
ture: Have Engineering Organizations Found Suc-
cess? 2023.

[8] M. Camilli et al. “Integrated QoS-and Vulnerability-
Driven Self-adaptation for Microservices Applica-
tions”. In: ICSOC 2024. Springer, pp. 55–71.

[9] V. Heorhiadi et al. “Gremlin: Systematic resilience
testing of microservices”. In: ICDCS 2016. IEEE,
pp. 57–66.


	Introduction
	Preliminaries
	Conceptual Framework
	Evaluation Plan
	Conclusion

