
Towards Intelligent Performance Data Analytics

With Graph Databases

Ivo Rohwer1, Martin Straesser1, Yannik Lubas1, Samuel Kounev1, André Bauer2
1 University of Würzburg, Germany 2 Illinois Institute of Technology, USA

Abstract

Continuous observability of microservices requires
monitoring traces and resource consumption, generat-
ing vast amounts of data that are difficult to interpret
due to complex interdependencies. While tools like
Prometheus, Jaeger, and Grafana support label- and
time-based queries, they lack graph-based semantic
querying, which is well-suited to model microservice
architectures. This paper explores the potential of
leveraging the graph database Neo4j for performance
data, utilizing its expressive graph query language,
Cypher. Using pattern matching, Cypher supports
flexible querying of data in various semantic relation-
ships. Our approach will enable users to analyze time
series from various observability data sources, such as
Prometheus and Jaeger, supporting flexible pattern
queries, aggregations, statistical analysis, and tempo-
ral as well as structural queries within the microser-
vices context.

1 Introduction

Microservices are a common architectural style for
cloud applications, dividing large, complex systems
into smaller, more manageable services. Besides their
benefits, such as scaling services independently, they
introduce new design challenges, such as avoiding bot-
tlenecks and anti-patterns. For this purpose, often
graph-based algorithms are used that require a graph
data model [1, 2, 3, 4]. The application of graph al-
gorithms relies on semantic graph databases such as
Neo4j. While these databases enable advanced graph
queries, they are not well-suited for the storage and
querying of time series data [7].

In contrast to static graph analysis, microservice
performance problems are often identified during op-
eration by monitoring resource consumption, traces,
and error rates. Standard tools for collecting and vi-
sualizing traces and metrics include OpenTelemetry,
Prometheus, Jaeger, and Grafana.

Regarding graph analysis and observability tools,
we identify a gap between these two areas: Observ-
ability tools typically provide graph-based visualiza-
tions, but lack a comprehensive graph data model that
enables graph queries such as Cypher in Neo4j. In this
paper, we discuss our vision for an extension of Neo4j
that enables the querying of time series data from

observability tools via Neo4j. It offers a variety of
aggregation and analysis functions that are typically
found in time series query languages, but are lacking
in graph databases. We aim to facilitate the com-
bination of traditional graph and time series queries,
reflecting the complex nature of microservice observa-
tion data in terms of temporal sequences and graph
relations.

2 Related Work

Ammar et al. [7] presented HyGraph, which aims to
combine semantic graphs and time series databases
in a native manner. They demonstrated the advan-
tages of this concept using a prototype consisting of
Neo4j and TimescaleDB. In contrast, our approach is
tailored to the observability domain and aims to incor-
porate both traces and time series. Conversely, zero-
ETL graph systems such as PuppyGraph [8] allow ob-
servability data to be queried using Cypher without
loading it into a graph database. While these solu-
tions allow temporal relations to be queried to a cer-
tain extent, they lack specific functions for querying,
aggregating, and analysing time series.

Several publications [1, 2, 3, 4] address the use
of graph models to analyze the architectural quality
of microservice systems, but they lack consideration
of metrics and traces. Several machine learning ap-
proaches [5, 6] to root cause detection rely on graph
modeling of traces and metrics. However, these ap-
proaches do not involve query systems such as Neo4j,
but only the input representation of neural networks.

Current, well-established observability tools, such
as Grafana, Kiali, and Apache SkyWalking, offer
graph visualisations, but not graph queries as enabled
by Cypher. SkyWalking uses a query language called
GraphQL, but this only refers to the structuring of
the queries and does not utilize an underlying graph
structure in the queried data, despite including some
topology functions. On the other hand, TraceQL from
Grafana Tempo allows pattern matching, similar to
Cypher, but only for traces.

3 Approach

We aim to combine graph queries with performance
metric and trace queries. The Neo4j engine should
execute these queries, but metrics and traces should

remain stored in classic observability tools such as
Prometheus or Jaeger. To this end, we plan to imple-
ment a Neo4j plugin that enables the querying of per-
formance data from external data sources via Cypher.
In addition, our plugin should include various other
functions, such as the application of time series anal-
ysis and comparison, as well as functions for search-
ing graph elements based on temporal constraints.
Neo4j supports the close integration of Java plugins
into the database engine. Specifically, it enables user-
defined procedures invoked after the Cypher keyword
CALL and user-defined functions. In the following, we
provide an overview of our assumptions and planned
functions, which are currently at various stages of im-
plementation.
Data Storage/Sources. We aim to query time series
and traces from different data sources (including the
option of locally stored time series, but not recom-
mended). After registering a data source, such as
Jaeger or Prometheus, with the plugin, from the user’s
perspective, it should make no difference whether the
requested data is stored locally or in external time
series databases.
Graph Model. In related work, various graph models
are used to represent microservice systems [4]. We aim
to represent microservice architectures using service
nodes and operation nodes to represent the endpoints
of the services. This allows for detailed analysis of
call chains. The system state is mapped as follows: A
graph node is created for each deployment unit (e.g.,
a Kubernetes pod) and connected to the correspond-
ing service. These nodes can then be associated, for
example, with resource consumption, latency, or error
rate time series.
Time Series Queries. The Cypher query language is
designed for searching in graphs using pattern match-
ing. We plan to extend this with Neo4j procedures,
enabling the querying of time series related to individ-
ual nodes, in a similar way to conventional time series
databases, such as Prometheus or InfluxDB.
Aggregation Functions. Similar to the query languages
of typical time series databases, aggregation functions
such as the moving average, integral, or sum will be
applicable to time series. Neo4j already offers many
aggregation functions at the node level.
Time Series Analysis Functions. Alongside the ag-
gregation functions, we plan to incorporate various
analysis functions, such as change point detection.
Mathematical Relations. As well as semantic rela-
tions, it would also be beneficial to query mathemati-
cal relations, such as correlations between time series.
Temporal Search. To find pods from a specific time
period, for instance, we also intend to develop pro-
cedures to facilitate searching for objects. Appropri-
ate indexing is necessary to enable efficient time-based
searching in the graph database.
Structural Search. While Cypher enables very flexi-
ble graph queries, we plan to implement procedures

to shortcut frequently used structural graph search
queries. For example, the plugin should make it easier
to query all operations that are directly or indirectly
called by an initial operation, or all operations that
directly or indirectly call a service.

4 Examples

To demonstrate our Neo4j extension for querying
microservice traces and metrics, we will utilize the
GAIA dataset1, which CloudWise has published. This
dataset contains simulated tracing and metric data
from the MicroSS sample application, which consists
of five microservices: webservice, redisservice, mob-
service, dbservice, and logservice.

Below, we provide a few examples that reference
the MicroSS architecture to illustrate how our Neo4j
extension can be applied. We present a classical
Cypher query, followed by a time series query, and
then a combined query. These examples are based on
preliminary implementations and may not reflect the
final syntax of our Neo4j extension.

Call Chain Discovery. In this first exam-
ple, we apply a classical Cypher query. Sup-
pose we want to know the impact of an error in
the dbservice.db login methods operation of the
dbservice service on the other services in the Mi-
croSS example system. The following query can be
used to identify all services that directly or indirectly
call this operation:

MATCH(targetOp:Operation

{name: "dbservice.db_login_methods"})

MATCH (caller:Service)-

[: HAS_OPERATION]->(: Operation)-

[: DEPENDS_ON *0..]->(targetOp)

RETURN DISTINCT caller

Time Series Query and Aggregation. The follow-
ing query demonstrates a time series query with our
timegraph.data.get time series procedure:

MATCH (p:Pod {name : "webservice1"})

CALL timegraph.data.get_time_series(p,

"cpu_total",

{time : "2021 -07 -01 T10 :54:43Z",

range : "+2h",

aggregation : "integral"})

YIELD timestamps , values

RETURN timestamps , values

Using a syntax similar to that of time series
database query languages, this query retrieves the
CPU consumption over two hours for the pod named
webservice1 and aggregates the results using the in-
tegral function.

Error Localization. The next example illustrates
the combination of graph and time series queries: Let
us assume that we observe an unusual error rate dur-
ing the logservice.login model implement opera-
tion of the logservice service and want to locate

1https://github.com/CloudWise-OpenSource/

GAIA-DataSet

https://github.com/CloudWise-OpenSource/GAIA-DataSet
https://github.com/CloudWise-OpenSource/GAIA-DataSet

Figure 1: Illustration of the data model associated with an example service. Node types: service representation
(purple), operation representation (orange), pod representation (blue), and time series data (green).

the cause. We can then use the following query to
identify all operations in the microservice representa-
tion graph that are called directly or indirectly by the
logservice.login model implement operation, and
return the corresponding error rates.

CALL timegraph.search.

getCalledOperationsFromOperation(

"logservice",

"logservice.login_model_implement")

YIELD operation

CALL timegraph.data.get_time_series(

operation , "error_rate_pct")

YIELD timestamps , values

RETURN operation , timestamps , values

Here, we identify the cause of errors in a call
chain by combining graph-based search and time se-
ries queries.

5 Conclusion

Microservice architectures and deployments are often
modeled using graph representations. Current frame-
works used for querying microservice traces and met-
rics, such as Grafana, Kiali, and SkyWalk, usually
provide graph visualizations but lack graph queries
in the style of semantic graph databases. This pa-
per presents our vision for graph-based querying of
microservice traces and metrics. It utilizes the Neo4j
semantic graph database and extends its functional-
ity to enable the querying of time series and traces
from various observability data sources, including
Prometheus and Jaeger. Our planned framework will
include functions for temporal and structural searches
of objects within the context of microservice appli-
cations, as well as analysis functions. By doing so,
we intend to achieve a level of query flexibility that
surpasses the capabilities of existing tools and ap-
proaches.

Acknowledgements

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) – 510552229.

References

[1] R. S. Ashley Sun. How Lending Club Manages
Microservices with Neo4j. Neo4j Blog. accessed:
2025-08-19. Oct. 2015.

[2] S.-P. Ma et al. “Using service dependency graph
to analyze and test microservices”. In: 2018 IEEE
42nd Annual Computer Software and Applica-
tions Conference (COMPSAC). 2018.

[3] E. Gaidels and M. Kirikova. “Service Depen-
dency Graph Analysis in Microservice Architec-
ture”. In: Perspectives in Business Informatics
Research. Ed. by R. A. Buchmann et al. Cham:
Springer International Publishing, 2020.

[4] A. Tiwari. “Unveiling Graph Structures in Mi-
croservices: Service Dependency Graph, Call
Graph, and Causal Graph”. In: Abhishek Tiwari
(2024).

[5] S. Zhang et al. “No more data silos: Unified mi-
croservice failure diagnosis with temporal knowl-
edge graph”. In: IEEE Transactions on Services
Computing (2024).

[6] Z. Zhao et al. “CHASE: A Causal Hypergraph
based Framework for Root Cause Analysis in
Multimodal Microservice Systems”. In: arXiv
preprint arXiv:2406.19711 (2024).

[7] M. Ammar et al. “Towards hybrid graphs: Uni-
fying property graphs and time series”. In: 28th
International Conference on Extending Database
Technology. 2025.

[8] S. Wang. Logs, Metrics, Traces: From Theory
to Use at Coinbase. PuppyGraph blog. accessed:
2025-08-25. July 2025.

	Introduction
	Related Work
	Approach
	Examples
	Conclusion

