Extracting Reusable Service Demands for TeaStore

Elijah Seyfarth
$210942@th-ab.de
Aschaffenburg UAS, Germany

Sebastian Frank
sebastian.frank@uni-hamburg.de
University of Hamburg, Germany

Joéakim von Kistowski
joakim.vonkistowski@th-ab.de
Aschaffenburg UAS, Germany

Abstract

Software developers and system operators can use
simulators to predict the performance and resilience
of a software application. However, the accuracy of
the prediction heavily depends on the calibration of
the performance model, i.e., the service demands of
the system to be modeled. As calibration is a te-
dious process, this paper shares the extracted CPU
service demands of the widely used TeaStore refer-
ence microservice application, incl. the corresponding
approach and challenges. We extracted the service
demands by measuring utilization during experiments
and deriving service demands for each of the applica-
tion’s operations using the service demand law. We
exemplify the use of the extracted service demands for
simulating TeaStore with the MiSim resilience simu-
lator.

1 Introduction

Several performance and resilience simulators, such
as MiSim [11] and the Palladio Component Model [4],
enable quality predictions in what-if scenarios. These
tools support architectural decision-making without
requiring full implementation. For instance, MiSim
helps to evaluate and configure resilience mechanisms,
such as retries, timeouts, and circuit breakers.
Although simulations are less costly than real ex-
periments, they trade off accuracy and require cali-
brated performance models. Calibration typically de-
pends on service demand data (sometimes referred to
as service demands [5]), often estimated using spe-
cialized techniques [6]. However, obtaining accurate
service demands is challenging, complicating model
setup — both in industrial contexts and research, e.g.,
with reference architectures like TeaStore [8]. In the
absence of complete public datasets, researchers must
perform measurements and calibrations themselves.
This work contributes (i) a description of the setup
to calibrate a MiSim performance model of TeaStore,
(ii) insights gained during the process, and (iii) the
associated service demands and artifacts. These re-
sults support both practitioners aiming to calibrate
their own systems and researchers using TeaStore.

In our approach, we used the service demand law [1]
to extract the CPU service demands from the TeaS-
tore. Beforehand, we measured the CPU utilization
of the TeaStore under load. The extracted service de-
mands, including the scripts necessary for reproduc-
ing our experiments, can be found on GitHub! and
Zenodo?.

To evaluate the extracted service demands and
demonstrate their use, we applied them to an archi-
tectural description of TeaStore and executed MiSim.

2 Related Work

The literature related to this work can be grouped
into two main categories:

Service Demand Estimation Multiple general
approaches for service demand estimation have been
proposed [3, 5, 7, 10]. An evaluation of several ap-
proaches [6] shows the service demand law [1] to de-
liver the most precise results. Thus, we decided to use
this approach in our calibration process.

Characterizing TeaStore Performance Other
works performed similar experiments on the TeaStore
to characterize its performance [9, 12].

However, previous works on TeaStore either did not
extract any service demands or did not publish them.
In contrast to these existing works, we focus on the ex-
traction process and publish service demands for reuse
in any performance or resilience modeling context.

3 Process

To obtain the service demands needed to calibrate a
performance model, we measured the CPU utilization
of the TeaStore under load. Afterwards, we were able
to calculate the service demands by applying the ser-
vice demand law [1] to the measured utilization and
system throughput.

'https://github.com/TH-Aschaffenburg-Software-Design/
teastore-service-demands
2https://doi.org/10.5281/zenodo . 16959789

https://github.com/TH-Aschaffenburg-Software-Design/teastore-service-demands
https://github.com/TH-Aschaffenburg-Software-Design/teastore-service-demands
https://doi.org/10.5281/zenodo.16959789

Node 1 Node 3 Node 4
Kubernetes Master
Node 2

load generator

[Prometheus]

teastore-webui]

teastore-registry]

teastore-recommender

teastore-persistence

Figure 1: Distribution of components on the virtual
machines in the Kubernetes cluster

3.1 Setup

We set up the TeaStore [8], a microservice reference
application for benchmarking. We deployed TeaStore
in a Kubernetes cluster of four virtual machines, each
having two virtual 2.60 GHz CPUs and 8 GB of mem-
ory as shown in Figure 1. To rule out contention over
the CPU resource, we limited the CPU of each of Tea-
Store’s pods to 0.6 cores, except for the registry with
0.1 cores. Since TeaStore is a Java application that
uses a Just-In-Time compiler, we warmed it up for
at least 4 hours using TeaStore’s Buy Profile to guar-
antee realistic behavior. We monitored the TeaStore
using kube-state-metrics and stored the metrics in a
Prometheus database. To load the system, we used
the k6 load generator, as it offers advanced scripting
and provides an open workload model [2], which is
crucial for controlling the utilization during the mea-
surement.

3.2 Challenges

When designing the experiment for service demand
extraction, we faced multiple challenges.

Isolating the operations We were using kube-
state-metrics to monitor the CPU utilization of the
pods. However, to parametrize a performance model,
service demands on a per-operation level are required.
Sticking to our initial approach of using the service de-
mand law, we had to extract the utilization of individ-
ual REST-operations. To obtain the desired metrics,
we ran an individual experiment for each operation.
As TeaStore uses REST APIs for inter-service com-
munication, all operations are exposed as endpoints.
Thus, we set up the experiment to generate load onto
a single endpoint at a time over the experiment pe-
riod. Afterwards, we retrieved the CPU utilization of
the pod that exposed the endpoint. This way, we iso-
lated the utilization of the endpoint under test from
the utilization of its dependencies. Note that TeaStore
does not have dependencies within the same service,
which enables this method.

Parameterizing the endpoints Due to the need
for an isolated experiment run per operation, we had
to directly call REST APIs of services designed for
internal communication and not only the top-level

REST API of the webui service. These internal APIs
use special request bodies like session blobs or entities
with their IDs. We prepared these objects in advance,
e.g., we obtained a fresh session blob by sending a lo-
gin request with specific user credentials to the auth
service. That way, we prepared 100 session blobs for
each of TeaStore’s users. Apart from user informa-
tion, a session blob holds the user’s shopping cart
items. Because of that, we filled the shopping cart
of each prepared session blob with 2 items. During
the experiment, we varied the concrete arguments of
each request, if possible, to get realistic results. Ran-
dom numbers either served directly as an argument
or as an index for selecting an object out of a list. To
foster the experiment‘s repeatability and as a guaran-
tee to use the whole range of possible arguments, we
chose sequencing instead of random generation as a
number-generation method.

Handling the database Despite TeaStore holding
the user’s session data inside the session blobs, the
event of placing an order is persisted in the database.
As a result, the database fills up with each experi-
ment run. We noticed that this has a significant im-
pact on the performance of some retrieval operations.
Thus, we had to reset the database using TeaStore’s
database generation endpoint. As the resulting empty
database state is not realistic, we decided to only re-
set the database once before the experiment, and then
run the experiment for each operation subsequently.
In addition to that, we placed all operations affecting
the database in the beginning to create the database
state for the remaining operations.

3.3 Experiment run

We configured the k6 load generator with an open
workload and a constant arrival rate. For each oper-
ation, we determined an individual arrival rate based
on preceding measurements, aiming for a utilization
of 50% to prevent unwanted effects from under- and
overloading. However, we observed that only a uti-
lization of 25% was reached, despite the CPU of the
load generator node was running at full capacity. A
possible explanation for this behavior is that TeaStore
microservices exhibit bottlenecks typical for microser-
vice applications, such as I/O operations or bottleneck
dependencies to other services. As depicted in Fig-
ure 2, the load was executed over a period of 125s per
operation. This interval includes a sufficient warm-up
period of 20s, as well as an ending cut of 5s, leaving
a clean measurement period of 100s. All operation
experiments were run subsequently with a load pause
of 5s in between each run.

After the experiment run, we used the service de-
mand law [1] to calculate the service demands out of
the measured CPU utilization and the arrival rate, as-
suming a steady state equilibrium. We repeated the
experiment 18 times and provide the mean service de-
mands to reduce the impact of random errors.

Loaded

A

20s 100s 5s 5s

Reset DB Warmup | Measurement | Finish | Pause

Per operation

Figure 2: Experiment flow

3.4 Garbage Collection

We observed significant response time peaks in regu-
lar intervals. As we consider this unrealistic for actual
production usage, we tried to tune the garbage collec-
tor to lower the peaks. We achieved this by decreas-
ing the MaxGCPauseMillis parameter to 100 for all of
TeaStore’s services. For completeness, we extracted
service demands for three different configurations de-
fault, tuned, and Z Garbage Collector. We proved a
statistically significant difference of service demands
in 25 of the 32 operations at a 95% confidence level
using a one-factor ANOVA with a Bonferroni correc-
tion.

4 Applying the service demands

The service demands can be used to parametrize per-
formance and resilience models. To demonstrate this,
we calibrated an architectural description of the Tea-
Store with the obtained service demands and per-
formed a simulation in MiSim [11]. We defined the
experiment as an open model workload with a con-
stant arrival rate of 120 rps, distributed on the eight
webui endpoints, over an interval of 200s. For com-
parison, we set up a final experiment to measure the
response time of TeaStore with the same parame-
ters. Over 10 replications of this experiment, we ob-
served a mean response time ranging from 0.0067 s to
0.0074s. In contrast, the simulation produced a de-
terministic mean response time of 0.0201s. This dis-
crepancy stems from the fact that MiSim can only be
parametrized with one set of service demands. This
limits the performance model to focus on one single
resource, while TeaStore is influenced by several re-
sources in reality.

5 Conclusion

The provided service demands enable researchers to
run simulations of TeaStore without the application
setup. This allows for a quick evaluation of a per-
formance model, skipping the tedious process of cal-
ibration. Owur scripts and learnings can be used to
easily reproduce the experiments on different hard-
ware, which may be necessary for direct comparison
of TeaStore and its simulation.

In future work, we are planning on repeating the
experiments using more powerful hardware to further
evaluate the results and extract service demands of
additional resources. We also aim to build on the

1]

[10]

[11]

[12]

setup to thoroughly evaluate and improve the predic-
tion capabilities of MiSim for resilience scenarios.

References

D. A. Menascé, V. A. F. Almeida, and L.
Dowdy. Performance by Design: Computer Ca-
pacity Planning by Example. Prentice Hall Pro-
fessional, 2004.

B. Schroeder, A. Wierman, and M. Harchol-
Balter. “Open Versus Closed: A Cautionary
Tale”. In: NSDI ’06. San Jose, CA, May 2006.

X. Wu and M. Woodside. “A Calibration
Framework for Capturing and Calibrating
Software Performance Models”. In: Computer
Performance Engineering. Berlin, Heidelberg:
Springer, 2008, pp. 32-47.

S. Becker, H. Koziolek, and R. Reussner. “The
Palladio Component Model for Model-Driven
Performance Prediction”. In: JSS. Special Issue:
Software Performance - Modeling and Analysis
82.1 (Jan. 2009), pp. 3-22.

S. Spinner et al. “LibReDE: A Library for Re-
source Demand Estimation”. In: ICPE ’14. New
York, NY, USA: ACM, Mar. 2014, pp. 227-228.

S. Spinner et al. “Evaluating Approaches to Re-
source Demand Estimation”. In: Performance
Evaluation 92 (Oct. 2015), pp. 51-71.

S. Eismann et al. “Modeling of Parametric
Dependencies for Performance Prediction of
Component-Based Software Systems at Run-
Time”. In: ICSA ’18. IEEE, Apr. 2018, pp. 135—
135009.

J. Von Kistowski et al. “TeaStore: A micro-
service reference application for benchmarking,
modeling and resource management research”.
In: MASCOTS ’18’. IEEE. 2018, pp. 223-236.

S. Eismann et al. “Microservices: A Perfor-
mance Tester’s Dream or Nightmare?” In: ICPE
’20. Edmonton AB Canada: ACM, Apr. 2020,
pp. 138-149.

M. Mazkatli et al. “Incremental Calibration of
Architectural Performance Models with Para-
metric Dependencies”. In: ICSA ’20. 1EEE.
Mar. 2020, pp. 23-34.

S. Frank et al. “MiSim: A simulator for re-
silience assessment of microservice-based archi-
tectures”. In: QRS ’22. IEEE. 2022, pp. 1014~
1025.

J. S. Grohmann. “Model Learning for Per-
formance Prediction of Cloud-native Microser-
vice Applications”. PhD thesis. JMU Wiirzburg,
Mar. 2022.

	Introduction
	Related Work
	Process
	Setup
	Challenges
	Experiment run
	Garbage Collection

	Applying the service demands
	Conclusion

