
LLM-Assisted Microservice Performance Modeling

Maximilian Hummel, Nathan Hagel,
Minakshi Kaushik, Jan Keim, Erik Burger

Karlsruhe Institute of Technology, Germany

{firstname.lastname}@kit.edu

Heiko Koziolek
ABB Corporate Research Center, Germany

Heiko.Koziolek@de.abb.com

Abstract

Performance models guide resource-aware design
and analysis of microservices, for example, through
resource demands in Palladio Service Effect Specifi-
cations. Existing derivation methods for microservice
performance models rely either on extensive mea-
surements or on manual expert estimates. We
present a workflow that leverages large language
models (LLMs) to synthesize parametric performance
models from textual artifacts such as source code
or documentation, as well as from structured user
input. We evaluate the approach on an OPC Unified
Architecture (UA) server microservice, comparing
LLM-generated performance models against measure-
ment baselines on fixed hardware. LLM-generated
performance models capture CPU core utilization
as a linear function, consistent with measurements.
Although not entirely accurate, these performance
models provide first-order approximations for early
capacity planning and design decisions.

Index Terms— Microservices, Performance
Modeling, Large Language Models, Palladio, OPC
UA

1 Introduction

Modern software systems are increasingly built as mi-
croservices. While this architecture enables scalability
and independent development and deployment, it also
complicates reasoning about performance. A single
service’s resource demand on CPU, memory, or net-
work can become a bottleneck that scales nonlinearly
under load and strains entire deployments. Anticipat-
ing such behavior early is important to avoid costly re-
designs and overprovisioning. Performance models of-
fer a way forward: they abstract how services consume
resources under workload variation, allowing for early
prediction of scalability and capacity. In frameworks
such as the Palladio Component Model, resource de-
mands are defined for Service Effect Specifications
(SEFFs), making performance an explicit part of ar-
chitectural design [2]. However, deriving such models
remains challenging. Measurement-based approaches
need executable prototypes and realistic testbeds. Ex-
pert estimates must account for multiple dimensions

like realistic usage profiles, external dependencies and
deployment [1].

LLMs open a new path. They can extract
performance-relevant knowledge from artifacts such
as code, documentation, or structured questionnaires.
Prior efforts have used LLMs to predict execution
times [8] or infer dependency graphs [7], but these
typically lack parameterized performance models. Pa-
rameterized performance models enable what-if anal-
ysis (e.g., varying workload size or payload character-
istics). They can also be used in Palladio as resource
demands for SEFFs.

This paper presents a workflow that leverages
LLMs to synthesize parametric performance models
for microservices. Our approach combines artifact-
based prefill of a performance questionnaire with user-
guided completion, producing interpretable perfor-
mance equations for resource demands. We evaluate
the method on an OPC UA [5] server microservice,
comparing LLM-generated models against measure-
ment baselines, and demonstrate that even without
measurements, the models capture realistic trends in
CPU core utilization. As a result, LLMs can provide
first-order approximations for early capacity planning
and design support.

2 Related Work

Performance modeling of microservices has been ad-
dressed through different techniques. Measurement-
based approaches derive models from controlled ex-
periments. For example, Jindal et al. [4] introduced
MicroService Capacity (MSC) in the Terminus tool,
using sandboxed services, load tests, and regression
models to estimate capacity. While accurate, such
methods require running systems and extensive mea-
surements.

Model-driven techniques aim to provide earlier in-
sights. Pinciroli et al. [6] analyzed how microservice
design patterns affect performance, underscoring the
value of architectural abstractions. However, parame-
terizing these models remains challenging in dynamic,
heterogeneous environments.

Recently, LLMs have been explored for automat-
ing performance analysis. Nguyen-Nhat et al. [8] pro-
posed LLMPerf, which augments LLMs with regres-
sion heads to predict execution times from artifacts,



but without interpretable models. Zhang et al. [9] ap-
plied LLMs to estimate the performance of embedded
software on RISC-V, while Hu et al. [7] introduced
LLM4MDG to generate dependency graphs from doc-
umentation. These works demonstrate that LLMs
can extract performance-relevant properties; however,
they typically focus on raw numerical predictions or
structural dependencies.

In contrast, our approach synthesizes parametric,
resource-centric performance models that remain in-
terpretable and structurally aligned with established
measurement-based baselines.

3 Methodology

We present an LLM-based workflow to derive
resource-centric performance models for a single mi-
croservice. The concept applies to CPU, memory, and
network. The resulting performance models could be
used, e.g., to define resource demands for SEFFs in
Palladio.

The method is based on a structured performance
questionnaire. If a textual artifact (e.g., code, doc-
umentation) is available, an LLM extracts candidate
answers. Otherwise, the user fills it manually. The
questionnaire covers: (1) service and functional scope,
(2) deployment and configuration, and (3) workload
characteristics for the particular microservice.

Workflow We propose a two-step workflow to gen-
erate performance models (see Figure 1): (1) Prefill:
The LLM extracts candidate answers from artifacts,
leaving unknowns blank; (2) Completion and synthe-
sis: The user finalizes missing inputs for the ques-
tionnaire, and the LLM generates a parametric per-
formance model. A shared state maintains artifact
content, questionnaire answers, and resource selection
across steps.

Figure 1: LLM-based workflow for deriving resource-
centric performance models for a microservice.

Prompting Setup We use two prompt templates:
(1) Prefill, which is provided an artifact and unan-
swered questions to elicit answers for those questions.
(2) Synthesis, which is provided a completed ques-
tionnaire to elicit a performance model with a sym-
bol table, assumptions and rationale. The synthesis
prompt assigns the LLM the role of an experienced
performance engineer.

Performance Model The output of the workflow
is a resource-specific (CPU, memory, network) perfor-
mance model plus a symbol table for transparency.
For example, CPU core utilization could be modeled
as

CPU Core Util.% = α0·req rate+α1·payload size+α2,

where the coefficients are estimated by the LLM using
the questionnaire as input. req rate is requests per
second, and payload size is bytes per request.

4 Evaluation

We evaluate the presented approach by comparing
LLM-generated performance models against measure-
ment data for an OPC UA server microservice. The
goal is to assess how well LLMs can estimate resource
demands without measurements.

Use Case OPC UA is an industrial machine-to-
machine communication protocol designed for inter-
operability, security, and scalability. It is widely used
in automation and IoT environments, often on con-
strained hardware. Performance modeling of OPC UA
is therefore relevant for guiding hardware sizing and
avoiding overprovisioning or failures [3]. In our evalu-
ation, we target CPU core utilization of an OPC UA
server as the performance metric.

Setup and Data The measurements were con-
ducted on an Intel Core Ultra 7 165H with 32 GB
RAM and Windows 11. We used the Python OPC UA
library (version 0.98.13). The server updated signals
every 0.5 s, while one client read a varying number
of signals (100, 1000, 3000, 5000, 10000) at the same
rate. CPU core utilization of the server process was
measured over fixed durations. The OPC UA server
process can utilize multiple OS threads across sev-
eral cores. We report CPU core utilization as the sum
over logical cores (100% per core). The complete mea-
surement setup, results, source code, and all prompt
templates used in this study are openly available1.

The resulting measurements were compared
against models generated by the proposed LLM-based
approach. GPT-5 was used to prefill the performance
questionnaire and to synthesize the performance mod-
els. We used source code, documentation and nothing
as artifact to prefill the questionnaire. Questions not

1https://doi.org/10.5281/zenodo.17310391

https://doi.org/10.5281/zenodo.17310391


answered by the prefilling step are answered through a
predefined manually filled questionnaire for the OPC
UA use case. The questionnaire was manually com-
pleted by a master-level computer scientist working in
industrial research on OPC UA, ensuring domain fa-
miliarity and practical performance knowledge. We
compared the measured mean and maximum CPU
core utilization % in the steady state to the LLM-
generated performance models.

We repeated the evaluation with another LLM
(GPT-4.1) and different numbers of OPC UA clients
(1, 2, 5, 10), and observed results consistent with
those reported.

4.1 Results

Figure 2: Comparison of LLM-generated performance
models with measured mean and maximum baseline
CPU core utilization of the OPC UA server as the
number of signals increases.

Figure 2 shows the comparison between the gener-
ated performance models and the measured baseline.
Nine performance models were generated with three
artifact types: None (manually answering question-
naire), documentation, and code, with three gener-
ated performance model instances each.

The models generally reproduce the increasing
trend of CPU core utilization with the number of
signals. However, accuracy differs by artifact type.
Performance models generated without artifacts con-
sistently underestimate the maximum CPU core uti-
lization. Models based on code follow the slope more
closely and approximate the maximum values better.
Documentation and code artifacts both yield models
that are closer to the measured maximum, while mod-
els generated without artifacts align more with the
measured mean utilization.

Overall, the results show that LLM-generated mod-
els can provide a reasonable first estimation of per-
formance behavior. The choice of artifact influences
quality, with code artifacts producing the most realis-
tic approximations. While such models cannot replace
measurements, they can serve as an early indication
of expected system performance.

5 Conclusion

We presented an LLM-based workflow for deriving
microservice performance models and demonstrated
its feasibility on an OPC UA server use case. While
the results indicate that LLMs can provide reasonable
first-order approximations, the evaluation is limited
to a single microservice, hardware platform, and re-
source type. Future work will extend the study to a
broader range of microservices and resources to assess
generality. To increase accuracy, we plan to integrate
the LLM with deployment, load generation, and mea-
surement tools so that empirical data can be used to
fit model coefficients and produce more precise per-
formance predictions.

References

[1] H. Koziolek. “Performance evaluation of component-
based software systems: A survey”. In: Performance
evaluation 67.8 (2010), pp. 634–658.

[2] R. H. Reussner et al. Modeling and simulating
software architectures: The Palladio approach. MIT
Press, 2016.

[3] A. Burger et al. “Bottleneck Identification and Per-
formance Modeling of OPC UA Communication
Models”. In: Proceedings of the 2019 ACM/SPEC In-
ternational Conference on Performance Engineering.
ICPE ’19. Mumbai, India: Association for Computing
Machinery, 2019, pp. 231–242.

[4] A. Jindal, V. Podolskiy, and M. Gerndt. “Perfor-
mance Modeling for Cloud Microservice Applica-
tions”. In: Proceedings of the 2019 ACM/SPEC In-
ternational Conference on Performance Engineering.
ICPE ’19. Mumbai, India: Association for Computing
Machinery, 2019, pp. 25–32.

[5] OPC Foundation. OPC Unified Architecture – Part 1:
Overview and Concepts. Specification Part 1, Release
1.05. OPC Foundation, 2021.

[6] R. Pinciroli, A. Aleti, and C. Trubiani. “Performance
Modeling and Analysis of Design Patterns for Mi-
croservice Systems”. In: 2023 IEEE 20th Interna-
tional Conference on Software Architecture (ICSA).
2023, pp. 35–46.

[7] J. Hu et al. “LLM4MDG: Leveraging Large Lan-
guage Model to Construct Microservices Dependency
Graph”. In: 2024 IEEE 23rd International Confer-
ence on Trust, Security and Privacy in Computing
and Communications (TrustCom). 2024, pp. 859–869.

[8] M.-K. Nguyen-Nhat et al. “LLMPerf: GPU Perfor-
mance Modeling meets Large Language Models”. In:
2024 32nd International Conference on Modeling,
Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS). 2024, pp. 1–8.

[9] W. Zhang, M. Hassan, and R. Drechsler. “LLM-
assisted Performance Estimation of Embedded Soft-
ware on RISC-V Processors”. In: 2025 IEEE 28th
International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS). 2025,
pp. 7–12.


	Introduction
	Related Work
	Methodology
	Evaluation
	Results

	Conclusion

