
Analysis and Visualization of Unit Test Traces With

Kieker and ExplorViz

Malte Hansen
Kiel University
Kiel, Germany

David Georg Reichelt
Lancaster University Leipzig &

URZ Leipzig

Wilhelm Hasselbring
Kiel University
Kiel, Germany

Abstract

Testing software and understanding how software sys-
tems evolve are essential for maintaining code quality
and identifying changes that affect program behav-
ior. We present an approach for visually analyzing
unit test execution traces in the context of software
evolution. These traces are collected using the Peass
(Performance Analysis of Software Systems) tool in
conjunction with Kieker and OpenTelemetry. We use
ExplorViz, a web-based software visualization tool, to
visualize the collected trace data alongside data from
static program analysis. Visualizing how unit tests
interact with evolving codebases over time enables in-
sights into changes in test coverage and the impact of
refactoring or feature additions to program behavior.
We showcase our approach experimentally using the
OpenHAB Zigbee binding as the system under test.

1 Introduction

Software testing is an integral part of software devel-
opment to increase software quality, document it, and
increase a development’s team confidence in the soft-
ware under development [4]. In addition, developers
spend a considerable amount of time to read and un-
derstand source code [6]. Therefore, techniques and
tools to increase program comprehension such as soft-
ware visualization are needed [1].

In this work, we present an approach to analyze
and visualize traces from unit tests in the context of
the software’s evolution. To collect and analyze unit
test traces, we employ the Peass (Performance Anal-
ysis of Software Systems [9]) tool in combinations
with Kieker and OpenTelemetry [13, 14]. ExplorViz,
as web-based 3D software visualization tool, is used
to visualize the trace data with additional data from
static program analysis [8, 10].

OpenHab1 (open Home Automation Bus) is an
open source home automation platform. It enables
automating the use of various things in the household,
such as lighting, heating, security systems, and enter-
tainment devices. A central component of OpenHab is
the Zigbee binding, which enables the use of devices
that follow the Zigbee standard using the OpenHab
platform. In this work, we use the OpenHab Zigbee

1https://github.com/openhab

binding as System under Test (SuT) to demonstrate
the capabilities of ExplorViz for visualizing the evo-
lution of unit tests.

2 Related Work

It is common for test suites to compute metrics such as
code coverage or present the cumulated results in 2D
visualizations [3]. Dreef et al. present an approach
to display the test coverage within a software sys-
tem with matrix visualizations [11]. Therein, methods
that contain test code and methods of the system un-
der test are placed on the axis on the matrix. The
cells of the resulting grid can visualize the code cover-
age on a method level and by color coding failing tests
can be easily identified. Our approach also inspects
the code coverage on the level of methods but uses
a 3D visualization and combines static and dynamic
analysis.

Tahir et al. also combine static and dynamic analy-
sis to visualize test suites [7]. They use a dependency
graph to visualize the distribution of test code and
their relation to production code in open source soft-
ware systems, while we use the city metaphor.

3 Tool Architecture

Our tool ExplorViz is able to process and visualize
data from both dynamic and static program analy-
sis [12]. The process of data collection for a SuT is
presented in the following subsections.

3.1 Unit Test Instrumentation

For the trace visualization, ExplorViz needs Open-
Telemetry traces. These traces are created by execu-
tion of a SuT with instrumentation. This requires an
automation of the instrumentation, e.g., of adding the
monitoring probes to the source code, and automation
of the execution.

For instrumentation and execution automation, we
use the tool Peass [9], which has been built to de-
tect performance changes in unit tests. For unit test
analysis, Peass automates the instrumentation by in-
jection of either the monitoring probes directly in the
code or by automatically adding the Kieker agents
into the build tools maven and Gradle. We use this

https://github.com/openhab


Peass auto-instrumentation of unit tests in order to
obtain Kieker traces of all unit tests.

Afterwards, the traces need to be imported into Ex-
plorViz. To do so, we first replay them using Kieker’s
log-replayer, which can export them to any Kieker
tool. For the import into ExplorViz, we use Kieker’s
otel-transformer [13]. Finally, ExplorViz reads the ob-
tained trace and can visualize them. Figure 1 depicts
this process.

Kieker Agent
Peass

SuT Kieker Logs

log-replayerotel-transformerExplorViz

Figure 1: Trace Gathering Process

3.2 Analysis of Code Evolution

In addition to analyzing the dynamic properties of
the unit tests, we examine the static properties of the
SuT, including the package and class structure and
the methods they contain for different software ver-
sions. Given the URL of a Git repository, the Ex-
plorViz software system can analyze a given range of
commits. The frontend of ExplorViz requests both
the data from dynamic and static program analysis
and combines them into a unified visualization.

4 Visualization

To visualize the structure of a software system, Ex-
plorViz employs the city metaphor [2, 5]. Packages
are displayed as hierarchically nested districts on a
gray foundation that represents an application (see
Figure 2). Classes are visualized as cuboid buildings
inside those districts. Packages can be closed to hide
contained subpackges and classes. Collected metrics
about the SuT, such as number of methods or lines of
code, can be mapped to the width, depth, or height
of a building in the visualization.

The recorded method calls between objects of
classes are accumulated and represented by yellow
arcs. By default, the number of requests between two
classes is mapped to the width of the arc. Arcs can be
hovered with a mouse, to display which method calls
were captured by the dynamic analysis.

Unit Tests The data from the execution of test
cases and the data from static program analysis is
combined in the frontend. As both dynamic and static
program data is associated with a commit identifier,
the user can first select the desired commit from a
commit graph. Then, all the data points from dy-
namic program analysis that match the commit iden-
tifier are selectable from a timeline. Thus, the re-
sults from multiple runs of a the tests may be se-

lectable. The resulting visualization of the software
system can be searched, filtered, and offers many vi-
sual customization options.

In Figure 2, the OpenHab Zigbee binding is used as
a SuT and visualized. The data for the static analysis
is sourced from commit 2f0a43 in the official GitHub
repository.2 The repository contains 136 Java files
and over 20,000 lines of code for this commit. Users
can select the commit to be visualized. Via a config-
uration panel to the right, the layout and mapping of
metrics can be controlled, here mapping the number
of methods to the dimensions (volume) of the visual
representation of a class. As it is known for each class,
which of its methods were captured by static or dy-
namic analysis (or both), we can compute the ratio
between those two categories, giving us a code cover-
age of the instrumented tests on a method level. We
apply a heat map to the classes to visualize this metric
in the given example. Blue in the heat map indicates
that most or all of a class’s methods were only cap-
tured by static program analysis. Conversely, red in-
dicates that dynamic program analysis, or a combina-
tion of static and dynamic program analysis, captured
most of a class’s methods. When another commit is
selected, the changes in classes and metrics are ani-
mated, and the applied heat map is updated. It is
possible that for the OpenHab Zigbee binding many
classes are only present in the static program analysis
and thus not covered by the instrumented unit tests.

5 Summary and Outlook

We introduced a tool chain for analyzing the execu-
tion traces of unit tests in the context of software evo-
lution, combining dynamic runtime data from Kieker
with static program analysis in ExplorViz. The result-
ing visualization in ExplorViz was made concrete by
applying our approach to the OpenHab Zigbee bind-
ing.

We plan to extend our approach in the future by in-
tegrating it into a continuous integration pipeline. In
addition, the information whether a test passed can be
incorporated to enable visual inspection of failed tests.
In terms of performance engineering, we envision to
integrate with performance benchmarking tools and
make their results visually explorable.

References

[1] J. T. Stasko, M. H. Brown, and B. A. Price.
Software Visualization. Cambridge, MA, USA:
MIT Press, 1997.

[2] C. Knight and M. Munro. “Comprehension
with[in] Virtual Environment Visualisations”.
In: Proceedings Seventh International Workshop
on Program Comprehension. 1999, pp. 4–11.
doi: 10.1109/WPC.1999.777733.

2https://github.com/openhab/org.openhab.binding.

zigbee

https://doi.org/10.1109/WPC.1999.777733
https://github.com/openhab/org.openhab.binding.zigbee
https://github.com/openhab/org.openhab.binding.zigbee


Figure 2: Visualization of the openHAB binding for ZigBee in ExplorViz.

[3] J. Jones, M. Harrold, and J. Stasko. “Visual-
ization of test information to assist fault lo-
calization”. In: Proceedings of the 24th Inter-
national Conference on Software Engineering.
ICSE 2002. 2002, pp. 467–477. doi: 10.1145/
581396.581397.

[4] L. Moonen et al. “On the Interplay Between
Software Testing and Evolution and its Effect on
Program Comprehension”. In: Software Evolu-
tion. Springer Berlin Heidelberg, 2008, pp. 173–
202. doi: 10.1007/978-3-540-76440-3_8.

[5] R. Wettel, M. Lanza, and R. Robbes. “Soft-
ware systems as cities: a controlled experiment”.
In: ICSE. 2011, pp. 551–560. doi: 10.1145/
1985793.1985868.

[6] R. Minelli, A. Mocci, and M. Lanza. “I Know
What You Did Last Summer - An Investiga-
tion of How Developers Spend Their Time”. In:
ICPC. 2015. doi: 10.1109/ICPC.2015.12.

[7] A. Tahir and S. G. MacDonell. “Combining
Dynamic Analysis and Visualization to Ex-
plore the Distribution of Unit Test Suites”. In:
2015 IEEE/ACM 6th International Workshop
on Emerging Trends in Software Metrics. 2015,
pp. 21–30. doi: 10.1109/WETSoM.2015.12.

[8] F. Fittkau, A. Krause, and W. Hasselbring.
“Software landscape and application visualiza-
tion for system comprehension with ExplorViz”.
In: Information and Software Technology 87
(2017), pp. 259–277. doi: 10.1016/j.infsof.
2016.07.004.

[9] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“PeASS: A Tool for Identifying Performance
Changes at Code Level”. In: ASE. 2019. doi:
10.1109/ASE.2019.00123.

[10] W. Hasselbring, A. Krause, and C. Zirkelbach.
“ExplorViz: Research on software visualization,
comprehension and collaboration”. In: Software
Impacts 6 (Nov. 2020). doi: 10.1016/j.simpa.
2020.100034.

[11] K. Dreef, V. K. Palepu, and J. A. Jones.
“Global Overviews of Granular Test Coverage
with Matrix Visualizations”. In: 2021 Work-
ing Conference on Software Visualization (VIS-
SOFT) 00 (2021), pp. 44–54. doi: 10.1109/
vissoft52517.2021.00014.

[12] A. Krause-Glau et al. “Visual Integration of
Static and Dynamic Software Analysis in Code
Reviews via Software City Visualization”. In:
VISSOFT. 2024, pp. 144–149. doi: 10.1109/
VISSOFT64034.2024.00028.

[13] D. G. Reichelt et al. “Interoperability From
Kieker to OpenTelemetry: Demonstrated as
Export to ExplorViz”. In: SSP 2024. pid:
20.500.12116/46200. 2025, pp. 20–22.

[14] S. Yang et al. “The Kieker Observability Frame-
work Version 2”. In: ICPE ’25 Companion.
2025. doi: 10.1145/3680256.3721972.

https://doi.org/10.1145/581396.581397
https://doi.org/10.1145/581396.581397
https://doi.org/10.1007/978-3-540-76440-3_8
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1145/1985793.1985868
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/WETSoM.2015.12
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1016/j.infsof.2016.07.004
https://doi.org/10.1109/ASE.2019.00123
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1016/j.simpa.2020.100034
https://doi.org/10.1109/vissoft52517.2021.00014
https://doi.org/10.1109/vissoft52517.2021.00014
https://doi.org/10.1109/VISSOFT64034.2024.00028
https://doi.org/10.1109/VISSOFT64034.2024.00028
https://dl.gi.de/handle/20.500.12116/46200
https://doi.org/10.1145/3680256.3721972

	Introduction
	Related Work
	Tool Architecture
	Unit Test Instrumentation
	Analysis of Code Evolution

	Visualization
	Summary and Outlook

