Machine Learning Surrogate Models for Performance Prediction with
Architectural Models

Sebastian Weber
sebastian.weber@fzi.de
FZI Research Center for
Information Technology

Jorg Henf
henss@fzi.de
FZI Research Center for
Information Technology

Abstract

Predicting the performance of software systems en-
ables software architects to predict the fulfillment of
quality requirements such as latency or throughput
during design and operation. Simulation approaches
like the Palladio approach provide accurate estimates,
but become costly in highly explorative design pro-
cesses. We investigate machine learning surrogate
models that approximate simulation outputs with re-
duced computational effort. To this end, we generate
synthetic architectural models in the Text-Based Pal-
ladio Component Model format, simulate them with
Palladio approach to obtain performance metrics, and
train ML models on textual embeddings of these ar-
chitectures. The surrogate models predict average re-
sponse times faster than a full simulation and exceed
trivial baselines but have room for further improve-
ments in predictive accuracy.

1 Introduction

Estimating the performance of software systems be-
fore implementation allows architects to explore de-
sign alternatives and to identify potential bottlenecks
early. Approaches such as the Palladio approach [1]
provide accurate predictions of latency, throughput,
or scalability, but repeated simulations become costly
in settings where large numbers of alternatives need
to be analyzed, for example during automated de-
sign space exploration or in continuous integration
pipelines.

This work is based on a master’s thesis [10] in-
vestigating whether machine learning (ML) surrogate
models can complement simulation by providing faster
approximations of performance metrics. In line with
the vision of hybrid approaches that combine ML and
simulation [9], surrogate models are not intended to
replace simulation entirely, but to accelerate evalua-
tions in scenarios where a large number of design al-
ternatives can be explored. We implemented a fully

Vincenzo Pace
vincenzo.pace@student.kit.edu
Karlsruhe Institute of
Technology

Thomas Weber
thomas.weber@kit.edu
Karlsruhe Institute of

Technology

Robert Heinrich
robert.heinrich@uni-ulm.de
Ulm University

automated pipeline, visualized in Figure 1, for dataset
generation and surrogate model training. The term
model refers to two different kinds of models, namely
architectural models in the first half of the pipeline
and surrogate ML models in the second part. The syn-
thetic architectural models were created in the Text-
Based Palladio Component Model (TPCM)! format
and converted into Palladio Component Model (PCM)
instances for simulation. Using the Palladio simula-
tor, more than 15000 architecture models were sim-
ulated, producing performance metrics, i.e., average
response time. This data formed the basis for train-
ing and comparing multiple regression models, namely
linear baselines, support vector regression, random
forests, and neural networks.

The textual input of the models was transformed
into numerical features through TF-IDF (Term
Frequency-Inverse Document Frequency) [6] embed-
dings to serve as a simple baseline, while transformer-
based embeddings based on CodeBERT [5] were ap-
plied to capture richer structural patterns. The sur-
rogate models were then evaluated against the Pal-
ladio results to assess their accuracy, generalizability,
and runtime. The evaluation shows that surrogate
models consistently outperform trivial baselines, e.g.,
prediction based on averaged response times over all
input models, in terms of mean absolute error, but
that prediction quality in terms of the coefficient of
determination R? varies substantially between meth-
ods and embeddings. These findings demonstrate that
surrogate-based prediction from architectural models
is feasible, but further research is needed to improve
robustness and generalization.

2 Model Training

The training of surrogate models is realized through
a multi-stage pipeline, which is summarized in Fig-

Thttps://github.com/PalladioSimulator/
Palladio-Addons-TextBasedModelGenerator

https://github.com/PalladioSimulator/Palladio-Addons-TextBasedModelGenerator
https://github.com/PalladioSimulator/Palladio-Addons-TextBasedModelGenerator

Model Generation Simulation Dataset
(TPCM, PCM) (Palladio) (TPCM, Latency)

(TF-IDF, BERT)

Embeddings ML Training Prediction
(RF, SVM, NN) (MAE, RMSE, R?)

Figure 1: Overview of the pipeline from model generation to ML-based prediction.

ure 1. The pipeline begins with model generation,
where synthetic architectural models were automat-
ically created in the TPCM format. This domain-
specific language allows the structural definition of
software components, interfaces, and system compo-
sitions in a compact and textual representation. The
models contained varying numbers of TPCM model el-
ements that were randomly and syntactically correctly
connected. The generated models are not based on ex-
isting systems. For simulation purposes, the TPCM
instances were converted into PCM instances, which
can be processed by the Palladio simulator. In the
subsequent simulation step, the PCM models were
simulated using Palladio to produce quantitative per-
formance data. The main performance indicator con-
sidered in this study is latency, more specifically, the
average response time of the modeled system under
simulated workloads.

The generated models and their corresponding sim-
ulation results were stored in a dataset. Each entry
consists of a TPCM description paired with its simu-
lated latency value. In total, more than 15,000 archi-
tecture—latency pairs were collected, covering different
system sizes and interaction patterns. This dataset
provides the empirical foundation on which the surro-
gate learning was performed. As machine learning al-
gorithms require numerical input features, the textual
architecture models were transformed through two
different embedding techniques. The first is Term Fre-
quency—Inverse Document Frequency (TF-IDF) [6], a
classical method from information retrieval that rep-
resents documents as weighted vectors based on the
occurrence of tokens. The second is a transformer-
based approach using CodeBERT [5], which generates
contextual embeddings designed to capture structural
and semantic information in source code and related
technical languages.

With these embeddings, four types of regression
models were trained:

e Linear Models, i.e., ridge regression and lasso
regression, which provide a simple and inter-
pretable baseline

e Random Forests (RF), which combine multiple
decision trees into an ensemble predictor

e Support Vector Machines (SVM), which fit re-
gression hyperplanes in high-dimensional feature
spaces

e Neural Networks (NN), which can approximate
complex nonlinear mappings through stacked lay-
ers of neurons

Each of these model families offers different trade-offs
in terms of interpretability, computational efficiency,
and generalization ability. The last step is the usage
of the trained surrogate models for prediction, which
is detailed in the following Section 3.

3 Evaluation

The dataset was split into training, validation, and
test sets (80/10/10), and the predictor of the mean
latency was used as a baseline. The trained surro-
gates were assessed using standard regression metrics:
the Mean Absolute Error (MAE), which is shown in
Table 1, to measure the average deviation between
predicted and simulated latencies, the Root Mean
Squared Error (RMSE) to emphasize larger errors,
and the coefficient of determination (R?) to quan-
tify how well the predictions explain the variance in
the data. Each model type was trained with both
TF-IDF and CodeBERT embeddings and evaluated
under different hyperparameter configurations. For
linear models these were variations of regularization
strength, while for random forests the number and
depth of trees were tuned. Support vector regression
models were tested with different kernel functions and
penalty parameters, and neural networks were trained
with varying numbers of layers, hidden units, and
learning rates.

TF-IDF embeddings often outperformed Code-
BERT, possibly due to the sliding-window chunking
required by limited computing resources. Among re-
gressors, linear models such as ridge regression and
support vector regression achieved the most stable re-
sults. Random forests (RF) performed comparably
but with higher variance, possibly due to the large
range of the hyperparameter used. Neural networks
showed no clear improvement and occasionally over-
fitted. A key limitation of the approach and the re-
sults presented lies in the characteristics of the train-
ing data and the available resources. The dataset,
while comprising more than 15,000 samples, was still
limited in size relative to the possible complexity of
the architectures and covered only a small part of this
complexity. In addition, it exhibited a skewed dis-
tribution of latency values, leading to imbalance and
difficulties in learning rare cases. This affected the
ability of the models to generalize, particularly in sce-
narios with extreme performance outliers. In addi-
tion, training was constrained by limited computa-
tional resources, which required compromises such as
sliding-window chunking for transformer embeddings
and restricted the scope of hyperparameter optimiza-
tion.

Embedding Metric Lasso Ridge RF SVM Neural Net
Mean MAE ~ 0.4955 0.5288 0.4389 0.3418 0.2719
CodeBERT Median MAE 0.4672 0.4818 0.6289 0.4158 0.4127
n (samples) 36 36 71 96 118
Mean MAE 0.2097 0.2705 0.3973 0.4916 0.1611
TF-IDF Median MAE 0.1582 0.2197 0.6447 0.4575 0.1378
n (samples) 39 39 41 165 119

Table 1: High level comparison of different models across all model run configurations and embeddings

Overall, surrogate models outperformed the base-
line in terms of MAE and RMSE, but R? values were
often negative, indicating difficulty in explaining the
variance of simulated response times. The skewed dis-
tribution of latency values with several outliers con-
tributed to this instability. These results suggest that
surrogate prediction from TPCM input is feasible, but
improvements in representation and data quality are
needed to achieve robust generalization.

4 Related Work

Machine learning has been applied to performance
prediction in several domains. In configurable sys-
tems, testing across large configuration spaces is infea-
sible, which motivated surrogates such as DeepPerf [3]
and Perf-AL [8]. Both showed that deep neural archi-
tectures and adversarial learning can provide accurate
predictions from sparse samples. In high-performance
computing, ML has been used to predict execution
times and scalability. Malakar et al. [2] compared en-
semble methods and neural networks, while Mankodi,
Bhatt, and Chaudhury [7] studied shallow and deep
networks, illustrating trade-offs between model com-
plexity and training data size. Code-level approaches
such as DeepTLE [4] predict runtime performance
from source code tokens without execution, but they
require code and thus target later development stages.
In contrast, our work explores surrogate modeling di-
rectly from architectural descriptions in the TPCM,
enabling performance estimation before implementa-
tion [10].

5 Conclusion

We explored machine learning surrogate models for
predicting the performance of software architectures
described in the TPCM format in this paper. Based
on more than 15,000 simulated models, we trained dif-
ferent regressors on TF-IDF and CodeBERT embed-
dings. The results showed that surrogates outperform
a trivial baseline in terms of MAE and RMSE, but
their R? remained limited. TF-IDF combined with
linear models provided the most stable performance,
while neural networks and transformer embeddings
did not yield clear benefits.

Future work should focus on larger and more
balanced datasets, improved representations such as
graph-based embeddings, and more extensive hyper-

parameter optimization. In addition, the integration
of surrogates into design space exploration and con-
tinuous integration pipelines could demonstrate their
practical applicability in real-world development pro-
cesses.

Acknowledgements

This work has received funding from the European Chips Joint Un-
dertaking under Framework Partnership Agreement No 101139789
(HAL4SDV) including the national funding from the German Fed-
eral Ministry of Research, Technology and Space (BMFTR) un-
der grant number 16MEE0468. The responsibility for the content
of this publication lies with the authors. This work was funded
by the DFG (German Research Foundation) — project number
499241390 (FeCoMASS), by the Topic Engineering Secure Systems
of the Helmholtz Association (HGF) and supported by KASTEL
Security Research Labs, Karlsruhe and supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
SFB 1608 - 501798263.

References

[1] R. H. Reussner et al. Modeling and simulating software ar-
chitectures: The Palladio approach. MIT Press, 2016.

[2] P. Malakar et al. “Benchmarking Machine Learning Meth-
ods for Performance Modeling of Scientific Applications”.
In: 2018 IEEE/ACM Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Sys-
tems (PMBS). Nov. 2018, pp. 33-44.

[3] H. Ha and H. Zhang. “DeepPerf: Performance Prediction
for Configurable Software with Deep Sparse Neural Net-
work”. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). May 2019, pp. 1095-1106.

[4] M. Zhou et al. “Deeptle: Learning code-level features to pre-
dict code performance before it runs”. In: 2019 26th Asia-
Pacific Software Engineering Conference (APSEC). IEEE.
2019, pp. 252-259.

[5] Z. Feng et al. “Codebert: A pre-trained model for pro-
gramming and natural languages”. In: arXiv preprint
arXw:2002.08155 (2020).

[6] P. Koehn. Neural machine translation. Cambridge Univer-
sity Press, 2020.

[77 A. Mankodi, A. Bhatt, and B. Chaudhury. “Evaluation of
Neural Network Models for Performance Prediction of Scien-
tific Applications”. In: 2020 IEEE REGION 10 CONFER-
ENCE (TENCON). Nov. 2020, pp. 426-431.

[8] Y. Shu et al. “Perf-AL: Performance Prediction for Con-
figurable Software through Adversarial Learning”. In: Pro-
ceedings of the 14th ACM / IEEE International Sympo-
sium on Empirical Software Engineering and Measurement
(ESEM). Bari Italy: ACM, Oct. 5, 2020, pp. 1-11.

[9] L. von Rueden et al. “Combining Machine Learning and Sim-
ulation to a Hybrid Modelling Approach: Current and Fu-
ture Directions”. In: Advances in Intelligent Data Analysis
XVIII. Springer, 2020, pp. 548-560.

[10] V. Pace. “Evaluating the suitability of ML-based surrogate
models for performance prediction with design-time software
architecture models”. Unpublished. Master’s Thesis. Karl-
sruher Institut fiir Technologie (KIT), 2025.

	Introduction
	Model Training
	Evaluation
	Related Work
	Conclusion

