
Generation of Checkpoints for Hardware Architecture Simulators

Sebastian Weber
sebastian.weber@fzi.de
FZI Research Center for
Information Technology

Lars Weber
lars.weber@student.kit.edu

Karlsruhe Institute of
Technology

Thomas Weber
thomas.weber@kit.edu
Karlsruhe Institute of

Technology

Jörg Henß
henss@fzi.de

FZI Research Center for
Information Technology

Robert Heinrich
robert.heinrich@uni-ulm.de

Ulm University

Abstract

Simulations help to understand the behavior of sys-
tems before they are built or deployed. Combining
different simulation tools can be useful to focus on
specific aspects, such as overall functionality or de-
tailed timing. Switching between tools during a sim-
ulation requires knowledge of the current simulated
system state. If this state is missing, results may be
unreliable. This is especially important in multi-level
simulations, which often consist of many switches and
short simulation phases. We present an approach that
captures the internal state of a system, which we call
checkpoint, from an emulation in QEMU (Quick Emu-
lator), including memory, processor contents, and vir-
tual disk data. The checkpoint can be reused across
simulation tools, enabling realistic starting conditions,
more accurate results, and support for modular sim-
ulation workflows.

1 Introduction

Simulation is a widely used technique to evaluate the
behavior and performance of hardware/software sys-
tems in early development stages or during system
evolution. The simulation of a system requires a
model of its structure and behavior and a represen-
tation of how it is used. An additional influencing
factor becomes important depending on the system
and the simulated duration: the initial state of the
system. Grassmann [1] describes this phenomenon as
initialization bias, where simulation results may be
significantly distorted if the system begins from an
unrealistic or unrepresentative state. This issue can
be addressed through warm-up periods, allowing the
system to reach a statistical equilibrium before data is
collected. However, such techniques require long sim-
ulation durations and become impractical in scenarios
where only short simulation phases are executed. One
such scenario is multi-level simulation, such as the ap-
proach proposed by Weber et al. [8], where the level
of abstraction can change dynamically and frequently

during a simulation run. These changes can result
in many short simulation segments that lack the run-
time needed for traditional bias-reduction methods to
be effective. In such workflows, each transition be-
tween simulators demands a new, consistent, and re-
alistic initial state to ensure continuity and validity of
results.

To address this challenge, we present a method
for extracting a detailed system state from a run-
ning QEMU1 instance, which was developed during
a bachelor’s thesis [7]. QEMU is an open-source ma-
chine simulator and virtualizer that supports a wide
range of processor architectures, including x86, ARM,
and RISC-V. It can simulate complete hardware ar-
chitectures, including CPUs, memory, and peripheral
devices, allowing unmodified operating systems and
software to run in a controlled environment. One goal
of QEMU is the analysis of detailed hardware archi-
tectures, which software simulations typically do not
support. Depending on the configuration, QEMU can
simulate purely in software or use hardware-assisted
virtualization when supported by the host. Its mod-
ular structure and external control interfaces, such as
the QEMUMachine Protocol (QMP), make it suitable
for automation, analysis, and integration into simu-
lation workflows. Our approach produces structured
system snapshots, which we call checkpoints, that cap-
ture the internal state of a simulated machine, includ-
ing CPU registers, main memory, and the layout and
contents of block devices. These checkpoints are se-
rialized in an hardware-architecture-agnostic format
and support deduplication of identical memory and
storage regions across checkpoints. The extraction
is performed via QEMU’s Machine Protocol (QMP)
and Human Monitor Protocol (QHM), requiring no
modifications to QEMU itself. The ability to gen-
erate checkpoints directly from functional simula-
tions enables more accurate timing analysis based on
these checkpoints, reduces the need for heuristic or
synthetic initialization, and allows reproducibility in

1https://www.qemu.org/

https://www.qemu.org/


QEMU-based Simulation QMP / QHM Interface Pause / Stop

Extract CPU Registers

Dump Memory

Enumerate Block Devices

Extract and Format Metadata

Deduplicate Binary Segments

Serialize Metadata

Store Binary Segments

Checkpoint

Resume / Cont

Extraction Formatting Storage

Figure 1: Checkpoint generation from a QEMU-based simulation: extraction via QMP/QHM, metadata and
binary formatting, deduplication, and packaging into a portable checkpoint.

modular simulation workflows. In line with the vision
of Weber et al. [8], our checkpoints act as a bridge be-
tween fast high-level and slow low-level architectural
timing simulation. QEMU emulates the behavior of
the system correctly, but not necessarily the timing.
The generated checkpoints can then be used as in-
put for both high- and low-level simulations, elimi-
nating the need to transform between the states of
these simulations. By providing realistic and consis-
tent simulation entry points, they mitigate the risk
of initialization bias and help to ensure that despite
short simulation segments the overall results remain
accurate and reliable.

2 Checkpoint Generation

Figure 1 illustrates our approach for generating check-
points from QEMU-based simulations. The process
can be divided into three stages: extraction of the sys-
tem state, formatting of the extracted data, and stor-
age of reusable checkpoints, which will be presented
in the following paragraphs.

Extraction The extraction stage interfaces with a
running QEMU instance through QMP and QHM.
This allows the tool to operate without modifying
QEMU itself, ensuring compatibility with QEMU
across different versions. To guarantee consistency,
the QEMU instance is paused before extraction be-
gins, and resumed afterwards. During this pause, the
tool collects CPU register states using QHM com-
mands wrapped via QMP, dumps system memory in
ELF format, and enumerates block devices using the
query-block command. CPU registers are queried in
a way that ensures they are captured in their en-
tirety, while memory is dumped in a binary format
that maintains its structure. Each device is listed with
its associated image file, allowing for the recreation of
the complete system state.

Formatting and Storage Once the system state
has been extracted, it is formatted into a portable
and modular structure to facilitate its reuse across
different simulators. The extracted data is split into
two categories: metadata and binary data. Meta-
data, including CPU registers and device configura-
tions, is serialized as JSON, which provides a flexi-
ble and human-readable structure. The memory and
block device contents are stored as binary segments.
These binary segments are identified using crypto-
graphic hashes, specifically SHA-256, allowing for ef-
ficient deduplication. Identical memory regions or
device images across multiple checkpoints are stored
only once, significantly reducing storage overhead.
The binary segments of each checkpoint are compared
using their hashes to avoid redundancy. This process
is especially useful when frequent checkpoints are gen-
erated, as it minimizes the required storage space.

Evaluation The approach was evaluated based on
three criteria: correctness and performance overhead.
For correctness, we compared the extracted check-
points with native QEMU snapshots, ensuring that
CPU registers, memory dumps, and block device
states were identical, We did this for both x86 and
ARM. QEMU snapshots resemble internal memory
dumps that are primarily intended for restoring vir-
tual machines within the same QEMU instance. They
are difficult to interpret externally without extensive
parsing and can be subject to structural changes be-
tween QEMU versions. The results confirmed that
our tool accurately captures the internal system state,
preserving the integrity of the simulation. In terms
of performance, we measured the time required to
pause QEMU, extract data, and resume the simula-
tion. While the extraction of CPU registers takes less
than one second, extracting and saving the main mem-
ory and block devices depends on their size. Creating
a checkpoint for the Windows 11 Setup with a size



of 6.6 GiB and 1.8 GiB RAM took about 15 seconds,
which corresponds to the access speed of the NVMe
SSD used, because the data had to be accessed three
times. Working with smaller operating systems and
embedded hardware therefore allows to take check-
points in less than one second.

3 Related Work

Godala et al. [6] present QPoints2, a tool for cre-
ating checkpoints in QEMU to enable determinis-
tic replay and reproducibility of experiments. While
QPoints demonstrates the feasibility of checkpointing
in QEMU, its implementation requires invasive mod-
ifications to the emulator, which complicates mainte-
nance across different versions. Baudis [3] proposed an
approach to extract checkpoints from QEMU within
a SimuBoost [4] setup. He modified the QEMU code
and relied on the GNU debugger for data extraction,
using primarily the QEMU Human Monitor. Due to
the code being outdated and not publicly available the
thesis could not be used as starting point for our work.
In contrast to the these approaches, our approach
avoids modifications to the QEMU code base by re-
lying exclusively on its external interfaces (QMP and
QHM). This enables us to capture the internal state
of a simulated system, including CPU registers, mem-
ory, and block devices, in an architecture-agnostic and
reusable format, thereby reducing the effort of inte-
grating QEMU-based checkpoints into other simula-
tion workflows.

Weisse et al. [5] developed Lapidary3, a Python-
based tool for extracting checkpoints from the timing
simulation gem54 in the context of their work on spec-
ulative execution attacks. The simulation of systems
in gem5 is done in a similar way than QEMU, while
focusing on accurate performance as well. Therefore it
served as a possible target for state injection in other
simulators, which could not be implemented due to
time constraints.

A related line of research focuses on determinis-
tic replay of system executions in QEMU. Such ap-
proaches, exemplified by Dovgalyuk et al. [2], modify
the QEMU internals to record all non-deterministic
events during execution, enabling bit-exact reproduc-
tion of program behavior for debugging and dynamic
analysis. Rather than reproducing execution his-
tories, we aim to extract a reusable, architecture-
independent representation of the system state that
can serve as a realistic initial condition for further
simulation or analysis.

4 Conclusion

We explored an approach for generating checkpoints
from QEMU-based simulations in this paper. By
leveraging QEMU’s external interfaces (QMP and

2https://github.com/PrincetonUniversity/QPoints
3https://github.com/efeslab/lapidary
4https://www.gem5.org/

QHM), we were able to extract the internal state of a
system, including CPU registers, memory, and block
device configurations. The extracted data is stored in
a modular, architecture-agnostic format that allows
for reuse across different simulation tools and systems.
Our approach was evaluated in terms of correctness,
performance overhead, and storage efficiency. The re-
sults indicated that the tool generates accurate check-
points with low processing overhead, and deduplica-
tion of binary segments reduces storage requirements
by up to 80%.

We will carry out future work on extending sup-
port for larger memory sizes and adding compatibil-
ity for external devices such as GPUs or TPMs. Ad-
ditionally, the reintegration of checkpoints into run-
ning QEMU instances, including the manipulation of
system states for distributed simulations or state per-
sistence across simulation phases is planned. Finally,
integrating our checkpointing tool into broader multi-
level simulation workflows will demonstrate its utility
in real-world software architecture analysis and design
processes.

Acknowledgements
This work has received funding from the European Chips Joint Un-
dertaking under Framework Partnership Agreement No 101139789
(HAL4SDV) including the national funding from the German Fed-
eral Ministry of Research, Technology and Space (BMFTR) un-
der grant number 16MEE0468. The responsibility for the content
of this publication lies with the authors. This work was funded
by the DFG (German Research Foundation) – project number
499241390 (FeCoMASS), by the Topic Engineering Secure Systems
of the Helmholtz Association (HGF) and supported by KASTEL
Security Research Labs, Karlsruhe and supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
SFB 1608 - 501798263.

References
[1] W. Grassmann. “Rethinking the initialization bias problem in

steady-state discrete event simulation”. In: Proceedings of the
2011 Winter Simulation Conference (WSC). 2011, pp. 593–
599.

[2] P. Dovgalyuk. “Deterministic Replay of System’s Execution
with Multi-target QEMU Simulator for Dynamic Analysis and
Reverse Debugging.” In: CSMR. 2012, pp. 553–556.

[3] N. Baudis. Deduplicating Virtual Machine Checkpoints for
Distributed System Simulation. Bachelor’s Thesis. Karlsruhe
Institute of Technology (KIT). 2013.

[4] M. Rittinghaus. “Simuboost: Scalable parallelization of func-
tional system simulation”. PhD thesis. Karlsruhe Institute of
Technology (KIT), 2019.

[5] O. Weisse et al. “NDA: Preventing Speculative Execution At-
tacks at Their Source”. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture.
MICRO-52. Columbus, OH, USA: ACM, 2019, pp. 572–586.

[6] B. R. Godala et al. “QPoints: QEMU to gem5 ARM Full Sys-
tem Checkpointing”. In: gem5 Workshop at ISCA 2023. 2023.

[7] L. Weber. Generation of Checkpoints for Hardware Architec-
ture Simulators. Bachelor’s Thesis. Unpublished, Karlsruher
Institut für Technologie (KIT). 2024.

[8] S. Weber et al. “Combining a Functional Simulation with
Multi-Level Timing Simulation for Software Architecture
Models to Improve Extensibility”. In: 2024 IEEE 21st Inter-
national Conference on Software Architecture Companion
(ICSA-C). IEEE. 2024, pp. 74–78.

https://www.gem5.org/

	Introduction
	Checkpoint Generation
	Related Work
	Conclusion

