
LLMs on Affordable GPUs: A Benchmarking Study

David Georg Reichelt
Lancaster University /

URZ Leipzig

Daniel Abitz
URZ Leipzig

Jonathan Gross
URZ Leipzig

Stefan Kühne
URZ Leipzig

Abstract

A variety of Large Language Models (LLMs) ex-
ist, which have different characteristics regarding the
quality of their answers and their resource and time
consumption. For most of the LLMs, the required
hardware is costly. Nevertheless, to achieve data
sovereignty and privacy, hosting LLMs locally is nec-
essary. Due to the high costs, it is crucial to choose
LLMs and configurations that are suitable for the
given environment. In this benchmarking study, we
examine how to provide LLMs for researchers in the
context of a local university computing centre. To do
so, we extended an implementation of the LLM-as-
a-judge principle, and executed it on our infrastruc-
ture. Our extended implementation can be used to
decide what to host on different hardware, and to de-
cide which new models may fit better.

1 Introduction

Inference in LLMs, i.e., the generation of outputs from
a pre-trained model, requires a substantial amount
of computing power. If data privacy or sovereignty
should be achieved, the models need to be hosted lo-
cally. Modern graphics cards, such as the Nvidia H200
GPU with 141 GB RAM, cost around 30,000 Euros at
the time of writing. Therefore, they are not affordable
for most providers. This requires providers to make a
trade-off between costs, the quality of the results, and
the response time of the LLM.

In our context, we have 8 nodes with Nvidia L40S
with 48 GB available. Their inference capabilities
should be made available to researchers. For this pur-
pose, a stable environment with good quality and re-
sponse time needs to be provided. To parameterize
and test our environment, we perform a benchmarking
study [2] to parameterize our setup. The goal of this
study is to examine the quality and response times of
a set of LLMs that has been predefined by the users of
our research cluster. Models were selected if they are
fitting into the VRAM of our cluster and available in a
license that is usable on our cluster. A comparison of
the concrete VRAM usage or the energy consumption
was out of the scope of this research.

For our study, we extend an existing LLM-as-a-
judge implementation using the MT-bench bench-
mark data. Based on these benchmarking data,
we compare the different models and examine how

on-demand scaling works and how two different ex-
ecution engines work. We find that (1) Model
vllm-llama-3-3-nemotron-super-49b-v1 gives the
highest quality over all used models, (2) on-demand
scaling works, but the targetRequests needs to be
parametrized based on the model and runtime, and
(3) the LLM runtime vllm1 has better performance
for parallel use cases than the LLM runtime ollama2.

The remainder of this paper is organized as fol-
lows: First, we give an overview of LLM benchmarks
and existing benchmarking approaches in this field.
Based on them, we describe our extension of the exist-
ing LLM-as-a-judge code. Using this extended bench-
mark, we present our benchmarking results. Finally,
we give a summary and an outlook.

2 LLM Benchmarks

In the following, we first describe how quality bench-
marks for LLMs work. Based on this, we describe how
resource consumption of LLMs is typically measured.
Finally, we discuss existing LLM benchmarking stud-
ies of quality and resource consumption.

2.1 Quality Benchmarks

For quality benchmarking, the standard approach is
LLM-as-a-judge [4]: Each model is asked to answer a
set of questions, for example the questions from the
MT-bench benchmark (also introduced in [4]). After
the answers are collected, a prompt is used to ask an-
other LLM for a grading for each answer regarding a
selection of criteria. These gradings can be done com-
paring the models pairwise, grading single answers, or
grading the answers based on a set of criteria. Finally,
the results are used to estimate the average quality of
answers of a model in a certain field. This process is
summarized in Figure 1.

2.2 Resource Consumption Metrics

A simple response time analysis is not appropriate
for LLMs, since the complexity of the request cor-
relates with the response time: A longer prompt re-
sults in much longer response times. To overcome this,
benchmarking of LLMs usually determines the Time
To First Token (TTFT) and the Tokens Per Second
(TPS) [3]. The time to first token is crucial for the

1https://github.com/vllm-project/vllm
2https://ollama.com/

MT-bench (Prompts)

Writing Roleplay ...

Prompting
Response
Times

LLama 3 70b Mistral 7b

Judge
e.g., LLama 4

Evaluation
Prompts

Grading

Figure 1: LLM-as-a-Judge Process

users perceived performance, because when the first
token is available, the user can start reading the out-
put. The TPS give an indication of how fast the re-
sponse is generated; if the generation speed is lower
than the reading speed of the user, the LLM appears
to be slow.

2.3 Existing Comparisons

Tuggener et al. [6] use MT-bench to examine VRAm
usage, TPS and power consumption. They exam-
ine quantization, low-rank approximators and model
pruning to make models runnable with less hardware;
they find that according to MT-bench, this causes
very small changes to the result quality.

Jie et al. [7] examine how LLMs can be executed
on smartphone hardware. They find that LLama 7b
with 4 bit quantization, depending on the phone and
setup, can have roughly 10 TPS; however, due to the
small model size, the quality can be expected to be
worse than within our benchmarking study.

Chitty et al. [5] evaluate LLMs on high-end hard-
ware, e.g., NVidia H100 GPUs. Depending on the
model size, they find strongly varying TPS values,
reaching up to 3 000 TPS with 7B models. In contrast
to this work, they use different benchmarks for differ-
ent environments, e.g., llama-bench for llama.cpp.

3 Benchmark Extension: LLM-as-a-
Judge-And-Resource-Measurement

The basic LLM-as-a-judge implementation only
benchmarks the response quality, not taking into ac-
count the response times.3 To host the models, it is
also necessary to obtain TTFT and TPS, and compare
them for different models and configurations.

To do so, we extended the LLM-as-a-judge imple-
mentation to also measure response times, TTFT and
TPS. Furthermore, we obtained the count of running
pods of one model, to check the autoscaler. This re-
quired three extensions of the existing implementa-
tion: (1) To get TTFT, we switched the implementa-
tion to using the streaming API instead of the batch

3https://github.com/lm-sys/FastChat/tree/main/

fastchat/llm_judge

Prompt Response

TTFT Pod Count Kubernetes

Tokenizer

TPSResponse Time

Figure 2: Observability Data Gathering

API. After the first token is received, the time is mea-
sured, and by the difference to the start time, the
TTFT is calculated. Afterwards, to still store the
whole response, all tokens of the streaming response
are combined. (2) To obtain the TPS, we tokenize the
input and divide the token count by the overall time.
(3) To get the pod count, we analyzed the output of
kubectl get pods for the count of pods of the model
that is currently tested. This process is summarized in
Figure 2. Furthermore, the original implementation of
LLM-as-a-judge requires access to OpenAIs ChatGPT
interface. Therefore, we extended the implementation
to use any OpenAI compatible REST interface speci-
fied by --openai-api-base.

4 Result Analysis

We used the extended benchmark for three experi-
ments: The comparison of the quality of different
models, the comparison of the Ollama vs. the vllm
runtime and the configuration of scaling the pods. All
experiments were executed on CentOS 10 using Ker-
nel 5.14.0-503, running on the aforementioned cluster.
Our code and result data are available.4

4.1 Model Quality Comparison

To compare the quality, we asked ollama-llama3-3-
70b to judge all models answers. Figure 3 shows us
the results of selected models: Most models only have
slight differences, but the deepseek-coder-33b-instruct
has worse quality for every aspect excluding coding.

Figure 3: Quality Comparison of Selected Models

Even though the prompt response process is a ran-
dom process, the result quality is stable: We repeated
each prompt 12 times, and compared the grades

4https://doi.org/10.5281/zenodo.16037259

https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://doi.org/10.5281/zenodo.16037259

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70 80 90 100

vLLM TTFT
Ollama TTFT

vLLM TPS
Ollama TPSTT

FT
 /

s

TP
S

/ R
eq

ue
st

s
/ s

Parallel Requests

Figure 4: Comparison of the Behaviour of llama3
With ollama and vLLM

given by the judge. The maximum relative stan-
dard deviation between the different runs was 1.8%
for vllm-deepseek-coder-33b-instruct-2gpus.

4.2 Ollama vs. vllm

The LLM runtimes ollama and vllm are tailored for
different use cases: ollama is built for local execu-
tion on one device and vllm is built for high perfor-
mance LLM-servers. We evaluated whether one of
both is more suitable for our use case by running the
same model–llama-3.3-70b–on both runtimes. For this
model, Ollama requires one GPU and vllm requires
4 GPUs due to different quantization. The different
setup leads to different response times, which is shown
in Figure 4: While Ollamas TTFT increases with par-
allel requests, vLLMs TTFT nearly stays close to 0.
At the same time, Ollamas TPS decrease faster than
vLLMs TPS. Even with more Ollama pods, Ollama
still has higher TTFT and lower TPS. Therefore, for
handling parallel requests, using vLLM is more suit-
able than using Ollama.

4.3 On-Demand Scaling

To examine the scaling behavior, we started the
benchmarks with different count of parallel requests.
Figure 5 shows that with increasing count of parallel
requests, the TPS decrease. The KubeAI autoscaler
is mainly configured by the targetRequests param-
eter,5 which is the average number of active requests
that the autoscaler tries to maintain by scaling up or
down. If targetRequests is set to the default value of
10, the TPS reach the value they have at 10 requests
after enough pods are started. However, it takes a few
minutes (depending on the model) to start these pods.
Decreasing targetRequests leads to more pods being
started and the pods being started earlier; however,
it still takes the same time for the pods to be usable.

vllm is not able to scale to increase the size of one
pod, i.e., to scale horizontally. Increased pod sizes,
especially more GPUs per pod, might achieve better
performance metrics, at the cost of less flexibility to
scale single models. Since the current performance
metrics are sufficient, we did not examine this option.

5https://www.kubeai.org/reference/kubernetes-api/

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

Mistral-24b
Meta LLama 70b

Meta Llama 4 17b-16e

TP
S

Parallel Requests

Figure 5: TPS of Models Before Scaling

5 Summary and Outlook

In this work, we presented how we benchmarked mul-
tiple LLM models in order to have them running lo-
cally on our cluster. Our benchmark extension and ex-
periment setup can be used for evaluating additional
LLMs, or evaluating similar LLMs on different hard-
ware. For extension of this work, we see two main
directions: Additional observability metrics like cur-
rent VRAM usage or system TPS should be included.
For analysis also in production settings, automated
analysis of these observability data is necessary, for
example by extension of the Kieker framework [8].

Second, using fine-tuning or RAG [1], models can
be made more efficient for specific tasks. By extending
the setup, the benchmark could be used for models
that are adapted for specific purposes.

Acknowledgements Computations for this work
were done (in part) using resources of the Leipzig Uni-
versity Computing Center.

References
[1] P. Lewis et al. “Retrieval-augmented generation for

knowledge-intensive nlp tasks”. In: Advances in neural in-
formation processing systems 33 (2020). doi: 10.48550/
arXiv.2005.11401.

[2] W. Hasselbring. “Benchmarking as empirical standard in
software engineering research”. In: Proceedings of 25th
ICEASE. 2021. doi: 10.1145/3463274.3463361.

[3] X. Miao et al. “Towards efficient generative large language
model serving: A survey from algorithms to systems”. In:
(2023). doi: 10.48550/arXiv.arXiv.2312.15234.

[4] L. Zheng et al. “Judging LLM-as-a-Judge with MT-Bench
and Chatbot Arena”. In: Advances in Neural Information
Processing Systems 36 (2023). doi: 10.48550/arXiv.2306.
05685.

[5] K. T. Chitty-Venkata et al. “LLM-Inference-Bench: Infer-
ence Benchmarking of Large Language Models on AI Ac-
celerators”. In: SC24-W: Workshops of the ICHPCNSA.
IEEE. 2024, pp. 1362–1379.

[6] L. Tuggener et al. “So you want your private LLM at
home? A survey and benchmark of methods for efficient
GPTs”. In: 2024 11th IEEE SDS. 2024, pp. 205–212. doi:
10.1109/SDS60720.2024.00036.

[7] J. Xiao et al. “Understanding Large Language Models in
Your Pockets: Performance Study on COTS Mobile De-
vices”. In: (2024). doi: 10.48550/arXiv.2410.03613.

[8] S. Yang et al. “The Kieker Observability Framework Ver-
sion 2”. In: Companion of the 16th ACM/SPEC ICPE.
2025, pp. 11–15. doi: 10.1145/3680256.3721972.

https://www.kubeai.org/reference/kubernetes-api/
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.48550/arXiv.2005.11401
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.48550/arXiv.arXiv.2312.15234
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.48550/arXiv.2306.05685
https://doi.org/10.1109/SDS60720.2024.00036
https://doi.org/10.48550/arXiv.2410.03613
https://doi.org/10.1145/3680256.3721972

	Introduction
	LLM Benchmarks
	Quality Benchmarks
	Resource Consumption Metrics
	Existing Comparisons

	Benchmark Extension: LLM-as-a-Judge-And-Resource-Measurement
	Result Analysis
	Model Quality Comparison
	Ollama vs. vllm
	On-Demand Scaling

	Summary and Outlook

