Towards Scalability Analysis of State-based Model Comparison

Martin Armbruster
martin.armbruster@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Alp Torag Geng
ufyzm@student.kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Abstract

State-based model comparison is crucial in Model-
Driven Engineering (MDE) for identifying differences
between model versions. These differences support
various tasks such as version control and the synchro-
nization of related models to reflect the latest version.

The performance and scalability of state-based
model comparison impact overall system efficiency and
are particularly important in continuous integration
environments with frequent automated comparisons.

This study empirically evaluates state-based model
comparison using a Java code model, examining how
the performance behaves. The results provide insights
to enhance comparison techniques for large and evolv-
ing models in MDE workflows.

1 Introduction

Model differences are important for various tasks such
as synchronization, impact analysis, and automated
evolution of software models. State-based comparison
detects differences between two versions of a model
by matching similar elements and differencing their
changes [1]. It identifies additions, deletions, and modi-
fications directly from the model states, without requir-
ing access to an explicit change history. This approach
suits practical model-driven engineering (MDE) sce-
narios where tools often do not record fine-grained
edits, preventing the use of change-based or operation-
based methods that depend on recorded histories of
changes [3]. Therefore, tools such as EMF Compare
[5] are widely used for various state-based compar-
isons in MDE, enabling the implementation of different
state-based matching strategies, such as name-based
or structural ones, to suit diverse modeling needs [2].

The performance and scalability of state-based
model comparisons directly impact the efficiency of
software systems that rely on them, especially affecting
the performance of continuous integration (CI) work-
flows, including automated tests using model compari-
son. Frequent comparisons of large, evolving models

Manar Mazkatli
manar.mazkatliQkit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Anne Koziolek
koziolek@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

can introduce significant computational overhead and
reduce development responsiveness. One concrete ex-
ample is the Continuous Integration of Performance
Models (CIPM) approach [10], which aims to keep ar-
chitectural performance models up-to-date during agile
development. After each code commit, CIPM com-
putes differences between the previous and the current
version of the source model. These differences are de-
rived using a state-based comparison strategy and then
propagated to related performance models using model-
based consistency management platforms [7]. As noted,
updating the architectural performance model (aPM)
and automated tests in CIPM are affected by state-
based comparison performance on large-scale models.
Hence, this paper presents a first step towards an-
swering the question: ” How well do state-based model
comparison approaches scale with large-scale models
evolving in continuous integration workflows?”

To address this question, the paper empirically in-
vestigates the performance of state-based model com-
parisons in CIPM, using the CIPM prototype to as-
sess how the comparison behaves. The results aim to
improve the performance of comparison strategies in
large-scale MDE.

2 Background

Continuous Integration of architectural Performance
Models (CIPM) is an approach that keeps the aPM
up to date throughout development and operation.
During development, CIPM automatically updates
a source code model to extract source code changes.
Based on these changes, CIPM updates the aPM repos-
itory model for each commit in the CI pipeline [10],
using state-based model comparison before and after
the commit. CIPM currently supports Java source
code and uses a custom language-specific algorithm
[2] for these comparisons to improve the matching of
models by leveraging language-specific structural and
semantic features, thus capturing the hierarchy and
dependencies more accurately than generic similarity-
based approaches [2].

https://orcid.org/0000-0002-2554-4501
https://orcid.org/0000-0003-4261-8477
https://orcid.org/0000-0002-1593-3394

CIPM also calibrates performance parameters of
the aPM (e.g., resource demands) using measurement
data from tests or runtime environments [6].

By continuously updating and calibrating the aPM,
CIPM enables accurate architecture-based perfor-
mance prediction throughout the software lifecycle.
While the scalability of CIPM during operation has
been evaluated based on increasing measurement vol-
umes [10], scalability of state-based model comparison
during development still needs to be addressed.

3 Evaluation

This section presents a first evaluation of the state-
based model comparison in CIPM by executing CIPM’s
code for the model comparison and measuring its exe-
cution time.

3.1 Process

To evaluate the state-based model comparison,
repository-based evaluation tests were introduced. A
repository-based evaluation test RPT considers a sub-
set of commits C' = {cy, ..., cp} from a Git repository
R by comparing a subset of all possible commit pairs
CP C (C? with a model comparison algorithm MC
and an algorithm EzpMC, providing automatically
calculated, approximated expected results for model
comparisons.

The flow of an RPT is as follows: RPT
clones R and parses a Java code model JCM;
for each ¢; € C. Then, RPT computes the ex-
pected model comparison results ExpMCRes;; =
ExpMC(ci,c;) € {similar,notSimilar} for each
(ci,cj) € CP. ExpMC analyzes the Git diff between
¢; and c¢; for effective code changes (i.e., code that is ac-
tually changed in the diff patch). Upon finding any ef-
fective code change, the expected result is notSimilar.
Otherwise, it is similar. Afterward, RPT computes
the actual model comparison results ActMCRes; ; =
MC(JCM;, JCM;) € {similar, notSimilar} by exe-
cuting the model comparison, whose execution time
is measured. Then, RPT checks if ActMCRes; ; -
ExpMC Res; ; for each (¢;, ¢;) € CP. While this check
is not directly relevant for the measurements, it ensures
that the results ActM Res; ; are correct according to
ExpMRes; j. To accelerate future test runs, RPT
saves all ExpMC Res; j and JCM,; on disk and reuses
them in subsequent runs.

3.2 Setup

The evaluation here consists of 2 RPT's, one for TEAM-
MATES [8] and one for the Corona-Warn-App Server
(CWA-Server) [9]. TEAMMATES [8] is a cloud-based
tool with a web-based frontend and Java-based back-
end. It is a real-world application, used for feed-
back management for students and instructors. CWA-
Server [9] is the server part of the Corona-Warn-App,*

Thttps://github.com/corona-warn-app

Group | Minimum ‘ Maximum

TEAMMAT 8.1 s (sd = 313.7 ms,
(different) £33d0b — 83f518)

8.4 s (sd = 323.1 ms,
83518 — 48b67b)

3.7 s (sd = 157.7 ms,

~|
TEAMMATES | 3.7 s (sd = 203.4 ms,
(identical) 648425) ce4463)
CWA-Server 4.2 s (sd =173.5 ms, | 4.5s (sd = 229.7 ms,
(different) 2293 — 6e9702) 9323b8 — 206e8c)
CWA-Server 2.1 s (sd = 84.3 ms, | 2.2 s (sd = 124.0 ms,
(identical) Telb61) 206e8c¢)

Table 1: Minimum and maximum average execution
time within each identified group. The compared com-
mits are contained in every cell.

which enables proximity communication for exposure
notification. This evaluation considers TEAMMATES
and CWA-Server, as both are real-world Java applica-
tions and subjects of a previous evaluation [10].

Similar to previous experiments [10], for
TEAMMATES, we choose the commit sequence
(648425, 48b67b, 83 /518, £33d0b, ce4463). For CWA-
Server, we choose (7elb61,6€9702,¢22f93,33d1c9,
932308, 206e8c¢, 3977¢6, 94bcaba). For each pair (¢;, ¢;)
of commits within these sequences, we compared
their corresponding Java models in consecutive
((¢i,¢j) € CP) and reverse order ((c¢j,¢;) € CP),
resulting in 2 x (N — 1) comparisons, where N is the
number of commits in a sequence. Additionally, every
Java model was compared to itself ((¢;,¢;) € CP, N
comparisons). In total, this leads to 1 + 3 % (N — 1)
comparisons per sequence (i.e., 13 for TEAMMATES
and 22 for CWA-Server).

The model sizes for TEAMMATES range between
406,180 and 412,826 model elements and 585,925 and
596,336 references.

For CWA-Server, the model sizes range between
218,079 and 224,292 model elements and 303,642 and
312,560 references. We executed the measurements
on a laptop with an Intel Core i7-7700HQx8 CPU,
16 GB RAM, Fedora Linux 42, and Java 11. Every
comparison was repeated 100 times.

3.3 Results

Figure 1 shows the measurements of all comparisons.
We identified four distinct groups: one for the com-
parison of different models in TEAMMATES (red cir-
cles), one for the comparison of identical models in
TEAMMATES (grey pluses), one for the comparison
of different models in CWA-Server (blue Xs), and one
for the comparison of identical models in CWA-Server
(green minuses).

For the analysis of single measurement series, we
calculated the average execution time and standard
deviation, displayed in Table 1. In addition, we checked
if they are independent and identically distributed [4].
For 26 of 35 measurement series, this was not the case
so that we did not further analyze them.

https://github.com/corona-warn-app

Measurement Points

10000
|

8000

Execution Time (ms)
6000

4000

2000

0 20 40 60 80 100
Measurement

Figure 1: Results for all measurement series. Four
groups can be identified: group 1 (red circles) for dif-
ferent models in TEAMMATES, group 2 (grey pluses)
for identical models in TEAMMATES, group 3 (blue
Xs) for different models in CWA-Server, and group 4
(green minuses) for identical models in CWA-Server.

3.4 Discussion

As Figure 1 outlines, there is a difference in the execu-
tion times between TEAMMATES and CWA-Server.
They roughly correspond to the model sizes of the
TEAMMATES and CWA-Server commits so that the
difference could be largely attributed to the differences
in model sizes.

However, the different model sizes cannot explain
the time difference between the comparisons of identi-
cal and different models. As a consequence, there are
further factors influencing the performance and scal-
ability of the state-based comparisons. In particular,
one factor can be the number of single comparisons for
matching model elements. We hypothesize that this
number is larger for different models, which require
more comparisons for unequal elements. Another fac-
tor can be the model structure of the Java models.
While we only observed the number of model elements
and references, each Java model exhibits non-trivial
structures, which can have an influence on the compar-
ison. A third potential factor can be the comparison
of single model elements for matching them, as they
are language-specific and depend, therefore, on the
concrete elements.

4 Conclusion

In this paper, we present a first evaluation of the perfor-
mance of the state-based model comparison in CIPM
for selected projects. This is a first step towards in-
vestigating the scalability of state-based comparisons.

Within the measurements, we could identify four dif-
ferent groups, which are not only influenced by the
model sizes. In future work, we plan to further analyze
the measurements, investigate the factors influencing
the performance, and assess the scalability of the state-
based comparison.

All code and data of this paper are available online.?

Acknowledgments

This work was supported by the DFG (German Re-
search Foundation) with the Collaborative Research
Center “Convide” — SFB 1608 — 501798263 and
funded by the topic Engineering Secure Systems, KAS-
TEL Security Research Labs by the Helmholtz Associ-
ation (HGF).

References

[1] C. Brun and A. Pierantonio. “Model differences
in the eclipse modeling framework”. In: UP-
GRADE, The European Journal for the Infor-
matics Professional 9.2 (2008), pp. 29-34.

[2] D.S. Kolovos et al. “Different models for model
matching: An analysis of approaches to support
model differencing”. In: 2009 ICSE Workshop on
Comparison and Versioning of Software Models.
2009, pp. 1-6.

[3] M. Koegel et al. “Operation-based conflict de-
tection”. In: Proceedings of the 1st International
Workshop on Model Comparison in Practice.
IWMCP ’10. Malaga, Spain: Association for
Computing Machinery, 2010, pp. 21-30.

[4] J.-Y. Le Boudec. Performance Evaluation of
Computer and Communication Systems. 1st. Lau-
sanne, Switzerland: EPFL Press, 2011.

P. Langer. EMF Compare. 2019.

M. Mazkatli et al. “Incremental Calibration of
Architectural Performance Models with Paramet-
ric Dependencies”. In: IEEFE International Con-
ference on Software Architecture (ICSA 2020).
Salvador, Brazil, 2020, pp. 23-34.

[7] H. Klare et al. “Enabling consistency in view-
based system development — The Vitruvius ap-
proach”. In: Journal of Systems and Software
171 (2021).

[8] TEAMMATES Developer Web Site. June 29,
2022.

[9] Corona-Warn-App Server. May 10, 2023. URL:
https://github.com/corona-warn-app/cwa-
server (visited on 08/05/2025).

[10] M. Mazkatli et al. “Continuous integration of ar-
chitectural performance models with parametric
dependencies — the CIPM approach”. In: Auto-
mated Software Engineering 32.2 (May 29, 2025).

= o

2https://doi.org/10.5281/zenodo . 17348850

https://github.com/corona-warn-app/cwa-server
https://github.com/corona-warn-app/cwa-server
https://doi.org/10.5281/zenodo.17348850

	Introduction
	Background
	Evaluation
	Process
	Setup
	Results
	Discussion

	Conclusion

