Towards Bringing VITRUVIUS into the Cloud II:
Against Attacks from the Internet

Martin Armbruster
martin.armbruster@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Thomas Weber
thomas.weber@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Abstract

Consistency management for models is a field of ac-
tive research. While performance is usually of limited
interest, it is a necessity for the real-world applicabil-
ity of such tools. Last year, we introduced a client-
server architecture for our consistency management
tool VITRUVIUS, focusing on transferring the concepts
from monolithic to client-server. The contribution of
this paper is the extension of this client-server archi-
tecture with security mechanisms, concretely, authenti-
cation, authorization, and encryption, and a first look
on the influence on the performance of the tool. We
extended the existing implementation and took per-
formance measurements of the monolithic, the client-
server and the secured client-server architectures.

1 Introduction

Tools for model management in general and for con-
sistency between these models are an area of active
research, such as the VITRUVIUS tool [5]. We presented
an extension of the VITRUVIUS tool, migrating from a
monolithic architecture to a server-client architecture,
enabling a more diverse set of use cases [8]. However,
this extension was limited by not considering security,
e.g., the lack of user authentication and authorization.
As part of the CONVIDE research project [7], we
plan to use VITRUVIUS as a research platform, which
motivates our need for secured access and usage con-
trol to VITRUVIUS instances when used with industrial
or industry-inspired data. Similarly to the applica-
tion of VITRUVIUS in practice for the development of
cyber-physical systems [7], planned for the future of
VITRUVIUS, this necessitates security considerations.
To mitigate this issue, we extended the VITRUVIUS
server-client architecture by integrating transport se-
curity with TLS, different HTTP protocols, OAuth,
and OpenID Connect using the Eclipse Jetty server

Fatma Chebbi
fatma.chebbi@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

Anne Koziolek
koziolek@kit.edu
Karlsruhe Institute of Technology,
Karlsruhe, Germany

and client implementations'. While the integration
of these mechanisms is necessary for the application
of VITRUVIUS, they might have an impact on the per-
formance, which we want to investigate in this paper.
Therefore, in order to assess the performance of these
additions, we carried out several performance mea-
surements, comparing the monolithic architecture, the
client-server architecture, and the secured client-server
architecture.

2 Background and Related Work

Vitruvius is an approach for the view-based develop-
ment of consistent systems [5]. It focuses on two main
aspects: the management of consistency between over-
lapping parts of different models, and the definition
and use of views, which enable developers to interact
with custom views on the underlying models, tailored
for specific use cases. The information reduction em-
ployed through defining and using views helps devel-
opers cope with the complexity of the models. Views
are modified by developers interacting with VITRUVIUS,
and the resulting changes are propagated back into
ViTRUVIUS, which connects the different models and
keeps them consistent. Therefore, we exposed the
use of views (checkout, changing, committing changes)
over a REST interface in VITRUVIUS Remote [8].

Related Work Related approaches for consistency
preserving system development, e.g., DesignSpace [3]
or Comprehensive Systems [6] focus on the theoretical
foundations and less on the practical application, so
they are missing security considerations.

3 Vitruvius Security Server

To secure the VITRUVIUS Remote architecture, we em-
ploy three primary mechanisms on top of it. First, the
communication is secured through HTTPS, leveraging
TLS for encryption, integrity checks, and certificates

Thttps://jetty.org/, accessed 26.08.2025

https://orcid.org/0000-0002-2554-4501
https://orcid.org/0009-0008-7177-5213
https://orcid.org/0009-0001-5775-2225
https://orcid.org/0000-0002-1593-3394
https://jetty.org/

Configuration | Number of | Number of | Repetitions
Name Families Members per

Family
Small | 10 | 5 | 1000
Medium | 100 | 10 | 500
Large | 300 | 20 | 100

Table 1: Characterization of the evaluation configura-
tions [8]. The different number of repetitions is due to
the increasing runtime.

to maintain confidentiality, integrity, and authenticity.
Second, identity and access management is realized
with the OpenID Connect? protocol, enabling secure
authentication and token-based access control. Third,
server logging is introduced to support non-repudiation
and auditing.

We realized these mechanisms in a VITRUVIUS Secu-
rity Server based on Eclipse Jetty, which acts as an
API gateway to authenticate clients, enforce autho-
rization, and handle requests. It supports all HT'TP
versions (HTTP/1.1, HTTP/2, and experimentally
HTTP/3). The actual VITRUVIUS requests can be di-
rectly handled by the VITRUVIUS Security Server (direct
operation mode) or be forwarded to an internal, unse-
cured VITRUVIUS Server (proxzy operation mode).

4 Performance Evaluation

The evaluation’s goal is to investigate whether the
VITRUVIUS Security Server adds overhead compared to
the monolithic VITRUVIUS and VITRUVIUS Remote.

4.1 Setup

To ensure comparability of our results with those from
last year, we planned a setup similar to [8]. Thus, we
reuse the same V-SUM consisting of two metamodels:
family and persons. For the family model, we generate
a model and record these changes, which are prop-
agated to the persons model. In the evaluation, we
measure the end-to-end execution time of the change
propagation. Furthermore, we consider three model
sizes for our measurements, depicted in Table 1.

We conducted two experiments. Experiment 1 runs
the monolithic VITRUVIUS, VITRUVIUS Remote, and the
VITRUVIUS Security Server on one machine. Experi-
ment 2 runs VITRUVIUS Remote and the VITRUVIUS
Security Server, where the server part is one machine
and the client part on another one. As the factors
HTTP version and operation mode of the VITRUVIUS
Security Server can be varied, we selected a subset of
the possible settings that does not surpass the scope
of this paper. Accordingly, we consider the VITRUVIUS
Security Server in the proxy mode with HTTP/1.1
and HTTP/2 (only for experiment 2).

For the actual measurements, we used two machines
S1 and S5. S7 is a Dell Precision 5820 Tower with

?https://openid.net/specs/openid-connect-core-1_0.
html, accessed 26.08.2025

an Intel Xeon W-2245 CPU (8 cores, 2 threads per
core), 125 GB RAM, and Arch Linux. Ss is a tower
PC with an Intel Core i9-14900KF CPU (24 cores, 2
threads per core), 62 GB RAM, and Arch Linux. On
both machines, we ran the VITRUVIUS server and client
programs within Docker containers and limited the
CPU core count to 4 and RAM to 16 GiB to avoid
inferences with other applications. Both machines
were located in the same building, but different rooms,
connected in the same virtual LAN over Ethernet.

4.2 Analysis Process

To statistically analyze the measurements, we calcu-
late their average execution time and corresponding
standard deviation. To check if differences in aver-
ages 0 are statistically significant, we perform pairwise
significance tests within each configuration and ex-
periment. Here, the null hypothesis is no difference
in the averages (f = 0). As we cannot assume nor-
mality, equal variances, or equal shapes for the mea-
surements, we apply the bootstrap-based approach
proposed by Johnston and Faulkner [4]. According to
this process, for two measurement series m; and ms,
N random resamples with replacement (m7 ; and m3 ,,
1 < i < N) are taken for each measurement series.
Then, the resamples are turned into a null distribution

b = mean(my ;) — mean(msj ;) — é’ Finally, the p

value, which expresses the probability to observe a 5;
at least as extreme as 6, is estimated by

SN 16> ‘é‘)+1
N+1 ’

ﬁ:

where I(-) is the indicator function. For p, a 95 %
confidence interval (CI) can be calculated, too.

We set N = 10,000. In addition, different from the
proposed approach, we check if a measurement series
is independent and identically distributed (iid) before
we resample it, since iid measurements are required
for the resampling [4]. Thus, we check if the estimated
autocorrelation coefficients fall within the 95 % CI of
+2 % y/n, n being the number of measurements [2]. If
this is not the case, we assume a time dependency
in the measurements and employ the stationary boot-
strap for resampling [1]. The stationary bootstrap
resamples blocks of measurements to retain the de-
pendency structure. At last, we choose a* = 0.01 as
significance level and applied a Bonferroni correction
to @ = 0.00037037 based on 27 comparisons.

4.3 Results

Table 2 and Table 3 show the average execution times
in experiment 1 and 2, respectively. In Table 4, the cal-
culated p values for the significance tests are depicted.
There are only three cases, in which the values differ
from all other values. Only VITRUVIUS Remote in the
large configuration in experiment 1 can be assumed as

iid.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Config Monolithic VITRUVIUS ~ Re- | VITRUVIUS — Se-

VITRUVIUS mote curity Server
(HTTP/1.1)

Small 11.8 ms (sd = | 80.7 ms (sd = | 39.4 (sd = 10.3
2.0 ms) 8.9 ms) ms)

Medium | 849.7 ms (sd = | 1,054.6 ms (sd | 1,002.8 ms (sd
38.1 ms) = 38.4 ms) = 38.3 ms)

Large 203 s (sd = | 21.5 s (sd = | 214 s (sd =
685.5 ms) 113.3 ms) 150.1 ms)

Table 2: Results for experiment 1 on Si: average
execution times and standard deviation.

Config VITRUVIUS Re- | VITRUVIUS Se- | VITRUVIUS = Se-
mote curity Server | curity Server
(HTTP/1.1) (HTTP/2)
Small-Sy 825 ms (sd = | 45.2ms (sd = | 43.6 ms (sd =
6.2 ms) 11.1 ms) 4.9 ms)
Medium-S; | 918.2 ms (sd | 900.5 ms (sd | 969.3 ms (sd
= 27.1 ms) = 40.0 ms) = 36.9 ms)
Large-S1 19.8 s (sd = | 19.5 s (sd = | 20.7 s (sd =
660.4 ms) 613.1 ms) 253.5 ms)
Small-Ss 65.9 ms (sd = | 30.4ms (sd = | 32.6 ms (sd =
2.9 ms) 7.9 ms) 5.1 ms)
Medium-Ss2 526.9 ms (sd | 467.0 ms (sd | 487.8 ms (sd
= 8.5 ms) = 9.4 ms) = 10.0 ms)
Large-Sa 93 s (sd = | 9.0 s (sd = | 9.2 s (sd =
51.6 ms) 50.6 ms) 90.4 ms)

Table 3: Results for experiment 2: average execution
times and standard deviation. The machine after the
configuration name operated as server, while the other
machine acted as client.

4.4 Discussion

Considering the p values in Table 4, we can reject the
null hypothesis with a = 0.00037037 in almost all cases
and can assume a statistically significant difference in
the averages, except for the three cases with a higher
p value. However, it should be noted that the upper
limit of the 95 % CI (0.000566) is greater than o.

In the results of experiment 1, we can observe that
the client / server architectures increase the average
execution times, in particular relatively for the small
model size. In experiments 1 and 2, the average ex-
ecution time of the VITRUVIUS Security Server with

Comparison | Config | p | 95 % CI

Nearly all All 0.0001 [0.0000051,
0.000566]

VITRUVIUS Remote | Large 0.0019998 | [0.001295,

- Security Server 0.003087]

(HTTP/1.1)

(Exp. 1)

Vitruvius Remote | Large-Si | 0.28167 [0.27294,

- Security Server 0.29057]

(HTTP/1.1)

(Exp. 2)

VITRUVIUS Security | Small-S; 0.05379 [0.04954,

Server HTTP/1.1 0.05839]

- HTTP/2 (Exp.

2)

Table 4: Results for the calculated p values for the
significance tests.

HTTP/1.1 is (except for two cases) statistically sig-
nificantly lower than the average execution time of
VITRUVIUS Remote, suggesting a slight improvement in
performance. A potential factor can be the employed
client / server implementations. While the VITRUVIUS
Security Server uses Eclipse Jetty, VITRUVIUS Remote
builds upon the Java-internal HT'TP Server [8]. Nev-
ertheless, the insignificant differences occurred in the
large configuration, which opens the question if larger
models can outweigh the overhead of the client / server
communication. For HTTP/2 in experiment 2, the
average execution time is in five of six cases above the
one of HTTP/1.1 and in two of six cases above the one
of VITRUVIUS Remote (one of the four remaining cases
does not differ statistically significantly). This implies
that HTTP/2 was slower than HTTP/1.1. There is no
clear indication how HTTP/2 compares to VITRUVIUS
Remote. For overall more insights, further measure-
ments are necessary in future work.

5 Conclusion

In this paper, we presented an extension of VITRUVIUS
Remote [8], which includes the integration of transport
security, authentication, and authorization. For the
future of the VITRUVIUS server-client architecture, we
plan to improve its general usability by conducting
field tests with domain experts, as well as further
performance analysis and security improvements.
All data in this paper are available online.?

Acknowledgements

This work was funded by the Topic Engineering Secure Systems
of the Helmholtz Association (HGF), supported by KASTEL Se-
curity Research Labs, Karlsruhe, and supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - SFB
1608 - 501798263.

References

[1] D. N. Politis and J. P. Romano. “The Stationary Bootstrap”.
In: Journal of the American Statistical Association 89.428
(1994), pp. 1303-1313.

[2] G. Kirchgéssner, J. Wolters, and U. Hassler. “Introduction and
Basics”. In: Introduction to Modern Time Series Analysis.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1-25.

[3] A. Demuth et al. “Designspace: an infrastructure for multi-
user/multi-tool engineering”. In: Proceedings of the 30th An-
nual ACM Symposium on Applied Computing. 2015, pp. 1486—
1491.

[4] M. G. Johnston and C. Faulkner. “A bootstrap approach is a
superior statistical method for the comparison of non-normal
data with differing variances”. In: The New Phytologist 230.1
(2021), pp. 23-26.

[5] H. Klare et al. “Enabling consistency in view-based system
development—the vitruvius approach”. In: Journal of Systems
and Software 171 (2021), p. 110815.

[6] P. Stiinkel et al. “Comprehensive Systems: A formal founda-
tion for Multi-Model Consistency Management”. In: Formal
Aspects of Computing 33.5 (2021), pp. 1067-1114.

[7] R. Reussner et al. “Consistency in the view-based development
of cyber-physical systems (convide)”. In: 2023 ACM/IEEE
International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C). IEEE. 2023,
pp. 83-84.

[8] M. Armbruster, T. Weber, and L. Kénig. “Towards Bringing

Vitruvius into the Cloud”. In: Softwaretechnik-Trends Band
44, Heft 4. Gesellschaft fiir Informatik e.V., 2024.

Shttps://doi.org/10.5281/zenodo. 17311676

https://doi.org/10.5281/zenodo.17311676

	Introduction
	Background and Related Work
	Vitruvius Security Server
	Performance Evaluation
	Setup
	Analysis Process
	Results
	Discussion

	Conclusion

