
Validating Alerts in Cloud-Native Observability

Maria C. Borges
mb@ise.tu-berlin.de

Information Systems Engineering,
Technische Universität Berlin

Julian Legler
jl@ise.tu-berlin.de

Information Systems Engineering,
Technische Universität Berlin

Lucca Di Benedetto
di.benedetto@tu-berlin.de

Technische Universität Berlin

Abstract

Observability and alerting form the backbone of mod-
ern reliability engineering. Alerts help teams catch
faults early before they turn into production outages
and serve as first clues for troubleshooting. However,
designing effective alerts is challenging. They need
to strike a fine balance between catching issues early
and minimizing false alarms. On top of this, alerts
often cover uncommon faults, so the code is rarely ex-
ecuted and therefore rarely checked. To address these
challenges, several industry practitioners advocate for
testing alerting code with the same rigor as applica-
tion code. Still, there’s a lack of tools that support
such systematic design and validation of alerts.

This paper introduces a new alerting extension for
the observability experimentation tool OXN. It lets
engineers experiment with alerts early during devel-
opment. With OXN, engineers can now tune rules at
design time and routinely validate the firing behavior
of their alerts, avoiding future problems at runtime.

1 Introduction

In cloud-native microservice applications, faults are
inevitable. When they occur, engineers rely on ob-
servability to identify possible service degradations
and coordinate a timely response. Alerts in this con-
text act as the smoke alarm, warning teams about
faults before they have a chance to cascade into user-
facing outages.

The detection mechanism behind alerts is rule-
based, using configurable expressions and thresholds.
This simplicity means that alerts are relatively easy to
set up alongside a monitoring system, especially com-
pared to other ML-based fault detection techniques.
However, even though they are easy to set up, design-
ing effective alerts can be quite challenging.

Thresholds must be carefully chosen to reduce false
positives, so as not to overwhelm or desensitize engi-
neers, so-called “alert-fatigue” [1]. At the same time,
we also want alerts to be timely, to quickly resolve any
creeping faults. An alert that is too forgiving may fail
to signal a critical issue until it is too late. It’s a

tricky balancing act, and a challenge that has been
well-documented in research [5, 6] and industry [2].

Another challenge with alert design is that once
alerts are configured, validating their operational re-
liability can be quite difficult. While Prometheus and
Cloudfare provide some tools for linting and unit test-
ing alerts, these tests only verify rule syntax and logic
and cannot simulate the complex, unpredictable fail-
ure patterns of production environments.

Even though alerting is such a critical aspect of
cloud-native engineering, alert design and validation
remain surprisingly informal. Design relies predom-
inantly on developer experience or ad-hoc reconfigu-
rations after major incidents [4], while validation is
minimal or non-existent. To ensure better alerting
practices moving forward, industry practitioners have
begun compiling alert design guidelines [3], while in
research, some first promising design approaches, e.g.
based on historical alert analysis [6], have started to
emerge. Despite these efforts, there is still a general
lack of practical tooling to support teams with their
alerting practices.

In this paper, we build upon our previous work
around observability assessment and experimentation
[8, 9]. We extend our observability experiment tool
OXN [7] to support alert design and validation. In
the following, we revisit OXN’s architecture and show
the design changes introduced for alert experimenta-
tion. To demonstrate its use, we evaluate two differ-
ent strategies for alert rules and then discuss future
directions.

2 OXN

In order to make informed design decisions around
observability and weigh between design alternatives,
engineers need a way to measure how effective their
observability actually is.

To support this, we developed OXN [7, 8], a tool
that enables such assessments during design time,
through controlled experiments. OXN combines fault
injection/chaos engineering with observability tuning,
allowing experimenters to explore how different ob-

servability setups respond to various fault scenarios.
OXN is able to deploy any cloud-native microser-

vice application as the system under experiment
(SUE), with a kubernetes helm chart. After deploy-
ing the SUE, OXN starts a workload generator, where
load shapes can easily be specified via locust files. Be-
fore and during the experiment, OXN applies treat-
ments, which are controlled changes to the system un-
der experiment. We distinguish between fault treat-
ments and observability treatments. With fault treat-
ments, experimenters can inject faults during the op-
eration of the application. With observability treat-
ments, they can change the observability of the ap-
plication, e.g. by enabling certain instrumentation
points, changing collection sampling, or adding new
alerting rules.

Alerting Extension
Previous versions of OXN supported fault detection
only through offline methods. The system would run
experiments and, upon completion, analyze the col-
lected observability data using fault detection algo-
rithms (e.g. classifiers) to determine whether the in-
jected faults were detectable.

With this alerting extension, we enable measure-
ment of online fault detection, including critical met-
rics such as time-to-detect. The observability alerting
component is deployed as part of the SUE. During the
experiment execution, OXN collects alerts from this
component and records their timestamps. These alert
timestamps are then compared with the fault injection
timestamps to classify detections into true positives,
false positives and false negatives.

While trying to measure alert accuracy, we were
confronted with a fundamental challenge: defining
what constitutes a valid detection versus a false pos-
itive is inherently context-dependent. For instance,
should an alert that triggers 30 seconds after a fault
injection has ended be considered a false positive? To
accommodate this, our extension provides flexibility
for practitioners to define their own conditions for
what constitutes valid fault detection.

For this reason, while we have implemented alert
precision and recall as a feature in OXN, we do not
include an evaluation based on these metrics in this
paper, as it would involve too many arbitrary assump-
tions. Instead, in the next section, we present an ex-
emplary alert validation that highlights two different
dimensions of alert design.

3 Exemplary Alert Validation

In this section, we demonstrate the applicability of
our approach for validating alerts. With OXN, prac-
tioners are able to compare the behavior of different
alert rules for specific fault scenarios.

For our demonstration, we chose two of the alert
design options outlined in the Google SRE Workbook
[2] and apply them to a popular opensource cloud-
native application.

SUE Setup and Experiment Specification
As our SUE, we use the OpenTelemetry Astronomy
Shop Demo1 microservice application, which is a com-
munity project intended to illustrate the use of differ-
ent observability tools in a near realworld environ-
ment. The application consists of 20 microservices
and is instrumented to collect several metrics, includ-
ing request and error rate.

For the experiments, we deploy the application in a
cloud-based, two-node kubenetes cluster2. We simu-
late a load of 800 concurrent users, keeping it constant
throughout the entire duration. For our experiments,
we focus on the frontend service. We design alerts
around the request error rate, a common Service Level
Indicator (SLI) in production systems. To calculate
the error rate, we use metric instrumentation already
present in the application.

As the ‘alert-worthy’ fault scenario, we employ
packet loss injection to simulate service degrada-
tion conditions. In our fault scenario, we introduce
three intermittent 1min-long phases where packet loss
spikes up to 25%. This simulates common infrastruc-
ture issues such as a misconfigured load balancer and
autoscaler. We execute this fault pattern several times
in succession, with cooldown periods in between, so
that we can have several data points for analysis.

Alert Design Alternatives
As a starting point, we consider an alert that defines
a simple and immediate threshold violation:

alert: HighErrorRate

expr: errorRate[90s]>0.03

This alert triggers as soon as the error rate for a 90s
window exceeds the defined threshold of 3%. While
this approach offers certain benefits, namely quick de-
tection with low time-to-detect, it also presents disad-
vantages, particularly being too “trigger-happy” and
potentially generating excessive alerts.

To mitigate these issues, practicioners can pursue
two primary strategies. The first is to increase the
time window for error rate calculation:

alert: HighErrorRate

expr: errorRate[120s]>0.03

With this change, the alert becomes less sensitive
but maintains the same threshold. It smooths out
temporary spikes but increases the time-to-detect.

The other strategy is to add a duration condition
for the threshold of the alert:

alert: HighErrorRate

expr: errorRate[90s]>0.03

for: 60s

This alert maintains the original 90s rate calcula-
tion window but requires the condition to persist for
60s before triggering. The advantage of this approach
is that alerts require a sustained degradation before
firing, which means that alerts are more likely to cor-

1github.com/open-telemetry/opentelemetry-demo/
2each node with 4vCPUs and 16GB Memory

github.com/open-telemetry/opentelemetry-demo/

errorRate[90s] errorRate[90s]>0.03-for30s
errorRate[90s]>0.03-for60s errorRate[90s]>0.03

♥ errorRate[90s]>0.03-for90s
♠ errorRate[120s]

errorRate[90s] errorRate[90s]>0.03-for30s
errorRate[90s]>0.03-for60s errorRate[90s]>0.03

♥ errorRate[90s]>0.03-for90s
♠

errorRate[120s]>0.03♤
♤

Figure 1: Error rate and alerts triggered during exemplary experiment run

respond to a significant event. However, the disadvan-
tage is that if the metric even momentarily returns to
a level below the threshold, the duration timer resets
and the alert never triggers.

Experiment-based Alert Comparison
With OXN, practitioners can validate these alert de-
sign assumptions and test them for their concrete ap-
plication and observability setup, to arrive at the most
suitable alert for their needs.

Figure 1 shows an example of such an experi-
ment. The baseline alert errorRate[90s]>0.03 trig-
gers very frequently, in five of the six injected patterns,
sometimes even triggering multiple times per fault sce-
nario pattern. As expected, increasing the error rate
window to 120s smooths out the curve, but now the
alert triggers only once, in the most severe service
degradation. As for the other strategy, adding a du-
ration condition also decreases the number of alerts,
though this behaves more variably as it is influenced
by the spikes within the fault scenario pattern.

With this example, we do not aim to answer which
alert design is best. Rather, we demonstrate that
practitioners can now systematically assess alert be-
havior through experimentation. Our results for this
concrete experiment also demonstrate that the ob-
served trends match theoretical expectations.

4 Conclusion

With OXN, we developed the first tool for experiment-
driven observability assessment. This new extension
lets practitioners compare different alerting decisions,
as well as validate alert triggering behavior. We
demonstrated the systematic approach by comparing
two different alert design strategies.

While we focused here on alert rules, fault detection
also depends on other underlying observability factors,
like instrumentation, collection rates, or even the met-
ric data model. OXN is able to test these in isolation
or also together. However, this opens up a large design
space that is time-consuming to explore. Through
batch experiments, OXN already makes first steps to-

wards automating this observability design space ex-
ploration. However, an obvious next step is to develop
an intelligent OXN—potentially AI-driven—that can
evaluate and recommend observability designs auto-
matically.

References

[1] B. Beyer et al. Site Reliability Engineering: How
Google runs Production Systems. O’Reilly Media,
Inc., 2016.

[2] B. Beyer et al. The Site Reliability Workbook.
O’Reilly Media, Inc., 2018.

[3] Š. Davidovič and B. Beyer. Reduce toil through
better alerting. https : / / www . oreilly . com /

content / reduce - toil - through - better -

alerting/. [Accessed: 30.06.2025]. 2019.

[4] S. Niedermaier et al. “On Observability and
Monitoring of Distributed Systems – An Indus-
try Interview Study”. In: Int. Conf. on Service-
Oriented Computing (ICSOC). 2019, pp. 36–52.

[5] H. Zhang et al. “Microservice Architecture in Re-
ality: An Industrial Inquiry”. In: Int. Conf. on
Software Architecture (ICSA). 2019, pp. 51–60.

[6] A. Jagannathan et al. “REFORM: Increase alerts
value using data driven approach”. In: Int. Conf.
on Cloud Engineering (IC2E). 2023, pp. 184–192.

[7] M. C. Borges, J. Bauer, and S. Werner. “OXN -
Automated Observability Assessments for Cloud-
Native Applications”. In: Int. Conf. on Soft-
ware Architecture - Companion (ICSA-C). 2024,
pp. 167–170.

[8] M. C. Borges et al. “Informed and Assessable Ob-
servability Design Decisions in Cloud-Native Mi-
croservice Applications”. In: Int. Conf. on Soft-
ware Architecture (ICSA). 2024, pp. 69–78.

[9] M. C. Borges and S. Werner. “Continuous Ob-
servability Assurance in Cloud-Native Applica-
tions”. In: Int. Conf. on Software Architecture -
Companion (ICSA-C). 2025, pp. 182–185.

https://www.oreilly.com/content/reduce-toil-through-better-alerting/
https://www.oreilly.com/content/reduce-toil-through-better-alerting/
https://www.oreilly.com/content/reduce-toil-through-better-alerting/

	Introduction
	OXN
	Exemplary Alert Validation
	Conclusion

