
First Steps for Performance Monitoring of Petri Net Simulator Renew

with Kieker

Marcel Hansson and Daniel Moldt
{firstname}.{lastname}@uni-hamburg.de

University of Hamburg, Hamburg, Germany

Abstract

To investigate how Kieker can be used for Java ap-
plications with dynamically loaded modules of the
Java Platform Module System (JPMS), we conducted
experiments with Renew. Renew is a Java-based
editor and simulator for reference nets, a nets-in-
nets Petri net formalism that allows the execution of
Java code during transition firing. Monitoring Re-
new’s simulator is challenging because Renew loads
core components as plugins in dynamic JPMS mod-
ule layers and can reach high simulation speeds. We
demonstrate how the Kieker observability framework
can be applied using Kieker source instrumentation.
The high execution throughput made the Kieker text
writer unsuitable without limiting fired transitions.
Nevertheless, the collected traces revealed specific ar-
eas for future optimization.

1 Introduction

Kieker does not allow direct monitoring of modular-
ized Java that uses the JPMS layer concept in the
usual manner. We have chosen the Reference Net
Workshop Renew as a testbed. The goal of this work
is to monitor and analyze the simulator component of
Renew to identify performance bottlenecks and at
the same time get insights for Kieker. Renew has
a plugin-based architecture. Each plugin is loaded in
its own JPMS layer. Therefore, all the challenges of
monitoring JPMS-based applications with Kieker are
present.

We faced two main obstacles. First, simple, auto-
matic Java agent instrumentation (via AspectJ) only
works for the static boot layer, with special Java vir-
tual machine command line options that are not ap-
plicable to dynamic modules. Second, Renew’s sim-
ulation is quite fast and consists of many methods,
producing monitoring data at rates that exceed the
throughput of Kieker’s text file writer in our setup.

We addressed the first challenge by applying Kieker
source instrumentation [8] to insert the Kieker moni-
toring code directly into the source code. The second
challenge was addressed by restricting the simulation
to a lower number of transition firings and adapting
the Kieker file writer’s queue size. After overcom-
ing these challenges, we recorded traces that revealed

method-level hotspots in the simulator for further in-
vestigation.

The remainder of the paper is structured as fol-
lows: First some foundations are introduced. Next,
we explore the two faced obstacles and the solutions.
Afterward we present as an example some findings in
Renew. In the end, we give a small conclusion with
further research topics as an outlook.

2 Foundations

In this section we quickly present Renew, the JPMS
and Kieker.

2.1 Renew

Renew [10] is a Java-based tool for modeling and sim-
ulating various Petri net formalisms, in particular ref-
erence nets. Petri nets are a mathematical modeling
formalism for discrete event systems, defined as bipar-
tite graphs of places and transitions with tokens rep-
resenting system states. Their execution semantics,
based on transition firing, enable analysis of properties
such as concurrency, synchronization, and reachability
(see [3] for a broader overview and definitions). Refer-
ence nets are a high-level form of Petri nets defined in
[1]. They allow developing whole applications based
on Petri nets, with Renew acting as the execution
and development environment [4]. Renew features
a plugin architecture [2] allowing easy expansion and
modularity. Even core components of Renew, like
the drawing framework, are implemented as plugins.

As research software, Renew is used in many con-
texts: in lectures and exercises to teach the concepts of
Petri nets, in practical courses for hands-on software
development, for long-running simulations for analysis
aspects and as a runtime environment for Petri net-
based applications. Especially the latter would benefit
from monitoring parts of the simulation component.

2.2 Java platform module system and Re-
new

The Java Platform Module System (JPMS), intro-
duced with Java 9, provides a framework for structur-
ing Java applications into modules with explicit dec-
larations of dependencies, exported packages, and ser-
vice interactions. This enhances encapsulation, main-

tainability, and runtime integrity [5]. Renew uses the
JPMS since release 4.0 [7]. Every Renew plugin is in-
tegrated in one module. At runtime for each plugin
(=module) a module layer is created. Module lay-
ers1 are immutable hierarchical groupings of resolved
modules, rooted in the boot layer, that govern class
loading and visibility. The module layers enable the
dynamic loading and unloading of plugins and their
constituent classes, which was not easily possible with
the previous architecture.

2.3 Kieker

Kieker is an observability framework for monitoring
and analyzing the runtime behavior of concurrent
Java applications [6, 11].

3 Obstacles

Two main hurdles arose when attempting to moni-
tor the simulator component of Renew: The quite
unique architecture of Renew and the simulation
speed.

3.1 Architecture

Renew’s plugin architecture together with the Java
Platform Module System (JPMS) results in runtime
creation of hierarchically ordered module layers, as
mentioned. Each plugin is a JPMS module and at
runtime is loaded into a module layer.

The problem now with automatic instrumentation
with, for example, the AspectJ-based Kieker Java
agent is that a module has to explicitly declare which
other modules it reads. By default, it can only read
modules and not the classpath (which would contain
required classes from AspectJ). With a command-line
option for the Java command, it is possible to de-
clare that a module reads the unnamed module (which
includes everything on the classpath), but this only
works for modules known at start time. It does not
work for the dynamically loaded modules/plugins of
Renew. It would therefore be possible to monitor the
module and plugin system of Renew, which reside in
a Loader component as part of the boot layer, but not
its simulator component or other plugins.

As the automatic approach with the Java agents
did not work, we tried direct source adaptation. There
is a tool for Kieker that directly adds instrumentation
code to the source code [8]. The tool wraps the body
of each method with the code to create Kieker mon-
itoring records. This adds roughly 40 lines of code
to each monitored method, making the source code
unmaintainable. In contrast, if the approach with
AspectJ had worked, it would have required no code
changes or just simple annotations to define the mon-
itored methods.

As mentioned, Renew is used in several different
contexts. The source code instrumentation could only

1https://docs.oracle.com/javase/9/docs/api/java/

lang/ModuleLayer.html

be applied during the build process for versions used
in the contexts where it would make sense and only
directly before deployment as part of continuous de-
ployment. This way the developers could work on the
unaltered code without the bloated source code. At
the moment this is not applied, as we still want to try
a more automatic approach.

It should be noted, that we still had to manually
adapt source files (module-info to add additional re-
quirements) to make the source instrumentation work.
This includes dependencies of Kieker, which could not
be resolved automatically, as Kieker itself is not yet
modularized. As well as a requirement to Kieker itself.
This was something we wanted to avoid and similar
adaptation may would have the Java agent approach
with AspectJ allowed to work as well. The tool for
Kieker source instrumentation though, could be eas-
ily adapted to add Kieker (and its requirements if not
modularized) as a requirement automatically.

So to quickly summarize this aspect: The Kieker
source instrumentation can be used to monitor JPMS
layer-based architectures, and with small modification
in the future, even without manual editing. Of course
an automatic approach without any adaptation (or
minimal with annotations) of the source code would
still be preferable.

3.2 Simulation Speed

Renew’s simulator can reach high throughput in
terms of transition firings. In practice this cre-
ated a second obstacle: the volume of monitoring
records generated during realistic runs overwhelmed
the Kieker text file writer in our environment. This
resulted in a termination of the monitoring during the
simulation. Also, the binary writer of Kieker, which
compresses the data to binary files before writing, did
not solve the problem. It only allowed more tran-
sition firings before termination. To obtain usable
traces, we restricted monitored runs to a lower num-
ber of transition firings and increased queue sizes of
Kieker for writing the records from the default 10,000
to 1,000,000. This made text-file logging viable to at
least get some data.

Of course, in an actual monitoring context, we
would not monitor every method. But as a first step,
we wanted to profile the Renew simulator to gain
insights into the simulator component and identify
points of interest for improvements and monitoring
candidates. This was a testing scenario to later mon-
itor the Renew simulations in larger contexts.

4 Results

With the obstacles solved, instrumenting the simula-
tor component produced monitoring traces that could
be analyzed with Kieker’s tools. As a test scenario,
a simple Petri net was created with two places and
two transitions arranged in a circle. The simulation
was run for 200 rounds, which means there were 400

https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html
https://docs.oracle.com/javase/9/docs/api/java/lang/ModuleLayer.html

Figure 1: Zoomed in view of a call tree.

Table 1: The ten most common calls.
Calls Method
88850 StepIdentifier.getComponents()
88850 StepIdentifier.equals(..)
88850 StepIdentifier.compareTo(..)
19555 Aggregate.getReferences()
15171 Tuple.hashCode()
12473 Searcher.getStateRecorder()
9797 Unify.isBound(..)
8896 Variable.getValue()
8896 Reference.getValue()
8238 Unify.isComplete(..)

transition firings.
Figure 1 shows a zoomed-in view of an aggregated

call tree diagram extracted from the produced traces
with the Kieker trace analysis tool. The figure show-
cases the highest number found in the graph. The ex-
act same method is also called at other points in the
graph. Adding these together results in 88,850 calls.
In table 1 the ten most common calls are shown.

For 400 transition firings these all seem to be un-
usual high numbers, especially the StepIdentifier ones
and are therefor promising starting points for perfor-
mance optimization.

5 Conclusion

We demonstrated that the Kieker framework can be
applied to a JPMS and dynamic module-layer-based
application like Renew with source instrumentation.
The monitoring traces provide actionable insights into
simulator behavior and identify hotspots for future op-
timization. Planned next steps include instrumenting
a wider set of Renew plugins and improving mon-
itoring by, e.g., remote TCP writing to a separate
machine, limiting the monitored methods, or using
compression to hopefully be able to monitor larger
simulation runs.

Also, further investigations to enable automatic
instrumentation are planned to avoid or reduce the
source code adaptations. Analyzing the performance
within nets themselves is also ongoing work [9].

Acknowledgement This research is funded by the
Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation), grant no. 528713834.

References

[1] O. Kummer. Referenznetze. Berlin: Logos Ver-
lag, 2002.

[2] M. Duvigneau. “Konzeptionelle Modellierung
von Plugin-Systemen mit Petrinetzen”. https:
/ / ediss . sub . uni - hamburg . de / handle /

ediss/3023. Dissertation. Vogt-Kölln Str. 30,
D-22527 Hamburg: University of Hamburg, De-
partment of Informatics, Oct. 2009.

[3] W. Reisig. Understanding Petri Nets - Model-
ing Techniques, Analysis Methods, Case Stud-
ies. Springer, 2013.

[4] L. Cabac, M. Haustermann, and D. Mosteller.
“Renew 2.5 - Towards a Comprehensive In-
tegrated Development Environment for Petri
Net-Based Applications”. In: Application and
Theory of Petri Nets and Concurrency - 37th
International Conference, PETRI NETS 2016,
Toruń, Poland, June 19-24, 2016. Proceedings.
Ed. by F. Kordon and D. Moldt. Vol. 9698. Lec-
ture Notes in Computer Science. Springer-Ver-
lag, 2016, pp. 101–112.

[5] N. Parlog. The Java Module System. Manning,
2019.

[6] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (June 2020).

[7] L. Clasen et al. “Enhancement of Renew to Ver-
sion 4.0 using JPMS”. In: Proceedings of the In-
ternational Workshop on Petri Nets and Soft-
ware Engineering 2022 co-located with the 43rd
International Conference on Application and
Theory of Petri Nets and Concurrency (PETRI
NETS 2022), Bergen, Norway, June 20th, 2022.
Ed. by M. Köhler-Bußmeier, D. Moldt, and H.
Rölke. Vol. 3170. CEURWorkshop Proceedings.
CEUR-WS.org, 2022, pp. 165–176.

[8] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“Towards solving the challenge of minimal over-
head monitoring”. In: Companion of the 2023
ACM/SPEC International Conference on Per-
formance Engineering. 2023, pp. 381–388.

[9] M. Hansson. “First Investigations of the Possi-
bilities of Performance Monitoring and Analy-
sis of Reference Nets with Kieker”. In: AWPN
2025 workshop proceedings. Ed. by R. Lorenz.
Algorithmen und Werkzeuge für Petrinetze
(AWPN). [in press]. 2025.

[10] O. Kummer et al. Renew – The Reference Net
Workshop. Release 4.2. Aug. 2025.

[11] S. Yang et al. “The Kieker Observability Frame-
work Version 2”. In: Companion of the 16th
ACM/SPEC International Conference on Per-
formance Engineering. 2025, pp. 11–15.

https://ediss.sub.uni-hamburg.de/handle/ediss/3023
https://ediss.sub.uni-hamburg.de/handle/ediss/3023
https://ediss.sub.uni-hamburg.de/handle/ediss/3023

	Introduction
	Foundations
	Renew
	Java platform module system and Renew
	Kieker

	Obstacles
	Architecture
	Simulation Speed

	Results
	Conclusion

