
Dynamic and Static Analysis of Python Software with Kieker

Daphné Larrivain
daphne.larrivain@ecole.ensicaen.fr

ENSICAEN, Caen, France

Shinhyung Yang
shinhyung.yang@email.uni-kiel.de
Kiel University, Kiel, Germany

Wilhelm Hasselbring
hasselbring@email.uni-kiel.de
Kiel University, Kiel, Germany

Abstract

The Kieker observability framework provides users
with the means to design observability pipelines for
their applications. Python’s popularity has exploded
over the years, thus making structural insights of
Python applications highly valuable. Originally tai-
lored for Java, adding Python support to Kieker is
worthwhile. Our Python analysis pipeline combines
static and dynamic analysis in order to build a com-
plete picture of a given system.

1 Introduction

Visual access to a system’s structure enables valu-
able insights, from identifying differences between in-
tended and implemented architectures to understand-
ing unfamiliar software [4].

Static analysis extracts key observations from
source code, whereas dynamic analysis uncovers run-
time behaviour. Combining the two allows for a more
comprehensive view. The latter is known as combined
analysis. This approach builds on earlier research [4].

This paper presents an extension of the Kieker ob-
servability framework [3, 9] for Python, enabling anal-
ysis and visualization of standard modules. Three
tools were developed, and maintenance challenges
identified. Section 2 reviews existing foundations, Sec-
tion 3 outlines the pipeline, Section 4 details the anal-
ysis types, and Section 5 covers the evaluation.

2 Related Work

Existing static analysis tools include AST match-
ers [10]. An abstract syntax tree (AST) is a tree
structure that represents the syntactic organization of
source code, where each node corresponds to a given
code construct.

Kieker’s existing approach, originally designed for
Fortran [4], offers principles adaptable to Python. The
Fortran workflow involved three steps: Fxtran 1 trans-
lates target source code into an AST, Fxca converts
the AST to a CSV format compatible with the Static

1https://github.com/pmarguinaud/fxtran

Figure 1: Combined analysis pipeline stages. Filter
tools are shown in white, and the intermediate data
formats are contained in arrow-like shapes.

Architecture Recovery (SAR) tool, and the SAR tool
then generates an architectural model from the CSV.

In this paper, we present two main contributions.
First, we brought the existing combined analysis ap-
proach, originally developed for Fortran applications,
to Python. Second, we incorporated the Tulip visu-
alization framework into our workflow, which signif-
icantly enhances the processing time and layout of
nested graphs.

3 General Pipeline

The Kieker observability framework offers a broad
set of tools. They follow the TeeTime pipes and fil-
ters architectural pattern [2]. In this model, filters
are processing steps and pipes connect them, requir-
ing compatible input and output formats. When this
condition is met, users can combine filters to build
custom processing pipelines and generate the desired
output.

Since the Kieker framework was not originally de-
signed to handle Python applications, it was necessary
to adapt existing tools and create new ones as de-
scribed in Table 1. The resulting processing pipeline
is shown in Figure 1. The extended version provides
a more in-depth exploration, including complete ex-
ample architectures to illustrate the approach [7]. A
replication package is available2 as well as a virtual
machine with the environment already set up.3

2https://github.com/kieker-monitoring/PCARP
3https://zenodo.org/records/16735614

https://github.com/pmarguinaud/fxtran
https://github.com/kieker-monitoring/PCARP
https://zenodo.org/records/16735614


Tool Description Origin Revision Language Repository
Pyparse analyzes Python code and outputs AST for SAR New New Python https://github.com/

kieker-monitoring/pyparse

OtktInst (Otkt Instrument Tool) applies Otkt DSL to in-
strument Python code

New New Python https://github.com/

kieker-monitoring/OtktInst

GGVIS (Grouped Graph Visualizer) renders graphs and ex-
ports to PDF/SVG/PNG

New New Python https://github.com/

kieker-monitoring/GGVIS

Otkt DSL (OpenTelemetry to Kieker Translation DSL) de-
scribes a mapping from OTel span to Kieker record

Kieker Improved Python,
Java, Xtext

https://github.com/

kieker-monitoring/OtktDSL

DAR (Dynamic Architecture Recovery) converts Kieker
logs to architecture models

Kieker As-is Java https://github.com/

kieker-monitoring/kieker

SAR (Static Architecture Recovery) builds architecture
models from received AST description

Kieker Fixes Java https://github.com/

kieker-monitoring/kieker

MOP (Model OPeration) merges and compares architec-
ture models

Kieker As-is Java https://github.com/

kieker-monitoring/kieker

MVIS (Model Visualization and Statistics Tool) exports
architecture models to graphics

Kieker As-is Java https://github.com/

kieker-monitoring/kieker

Table 1: We developed three new tools and revised two Kieker tools for our combined analysis pipeline.

4 Combined Analysis

Combined analysis is the process of fusing the in-
sights from static and dynamic analysis to get a better
picture of a given system. The general pipeline gath-
ers data from both processes before fusing them with
the Model Operation (MOP) tool.

4.1 Dynamic Analysis

Kieker’s Python support [5] builds on OpenTeleme-
try, a cross-language observability framework. Us-
ing OtktDSL [6], OpenTelemetry spans are translated
into Kieker records for dynamic analysis.

This bridge is technical, enabling data transfer but
leaving interpretation and selection to the user. To
ensure compatibility with Kieker tools, a Java-like ar-
chitecture was adopted, reconstructing not just files
but also classes for an object-oriented system view.

Application-specific analysis requires tailored in-
strumentation. Semi-automation is still possible via
naming heuristics. Otkt-Instrument was developed to
support this process. Since this is a hands-on process,
some heuristics may have been missed. To this effect,
new constraints can be easily added within the tool.
However, in some outlier cases, application-specific
systems may not be suitable for instrumentation, as
shown in the evaluation.

4.2 Static Analysis

The previous Fortran research outlines a general
process: source code → AST → CSV → SAR tool.
However, this sequence couldn’t be reused directly for
Python. ASTs are language-specific, and Python’s
built-in module doesn’t produce output compatible
with existing Kieker tools. To solve this, we devel-
oped Pyparse. It performs AST generation and CSV
conversion in one step, extracting two key types of re-
lationships: function calls and data flow. These are
then passed to the SAR tool for architecture recon-
struction.

4.3 Visualization

A key objective of the visualization process was
to lay out the graph to reveal the analyzed system’s
structure at a glance. The displayed components were
flattened in the default output, without any meaning-
ful grouping, which made the result difficult to inter-
pret.

To address this, nodes were grouped based on their
package affiliation. This led to the development of
GGVIS, a tool built on the Tulip framework [1]. Tulip
was chosen over the GraphViz dot utility due to the
latter’s limitations in handling nested graph layouts.

Figure 2: A close-up of the graph obtained by ana-
lyzing Pillow, one of the evaluated applications. The
nodes were laid out in a nested manner with Tulip.
The text was enlarged for readability.

5 Evaluation

We measured the duration of the entire pipeline,
except for the data gathering phase of the dynamic
analysis. This step was excluded because it includes
the runtime overhead of the application under test,
not the performance of the pipeline itself. The results

2

https://github.com/kieker-monitoring/pyparse
https://github.com/kieker-monitoring/pyparse
https://github.com/kieker-monitoring/OtktInst
https://github.com/kieker-monitoring/OtktInst
https://github.com/kieker-monitoring/GGVIS
https://github.com/kieker-monitoring/GGVIS
https://github.com/kieker-monitoring/OtktDSL
https://github.com/kieker-monitoring/OtktDSL
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker
https://github.com/kieker-monitoring/kieker


were compiled in Table 2. A few key observations
deserve to be highlighted. First, as the number of
files increases, processing time increases accordingly.

A. U. P. Matplotlib Numpy Scipy

Pyparse 1s 2s 10s 3m53s 2m57s 7m15s
DAR 2s 4s 1s 2s 2s
SAR 3s 6s 10s 7m26s 10m44s 21m58s
MOP 3s 6s 5s 26m13s 28s
MVIS 2s 3s 2s 1m10s 19m22s 3s
GGVIS 1s 1s 1s 4m28s 34s 1s

Total 12s 22s 29s 43m12s 33m37s 29m47s

Table 2: Pipeline durations in minutes and seconds
when analyzing standard Python modules. Note: A:
Anytree7, U: UXsim [8], and P: Pillow8.

Matplotlib4 and Scipy5 show low DAR times due
to limited input from dynamic analysis, which targets
only executable parts of the application. Since some
files are never run, they remain unaccounted for.

Numpy could not be instrumented due to
application-specific limitations, which prevented dy-
namic analysis. Our instrumentation approach relies
on wrapping Python functions. However, an internal
key system of Numpy already employs this mecha-
nism extensively. As a result, any attempt to modify
it breaks the module.

Finally, regarding Scipy, the MOP tool failed to
process the static model, relying solely on the dynamic
model during the merge and disregarding the static
one. This explains the low processing time. Nev-
ertheless, the DAR and SAR models remained struc-
turally valid and successfully generated correct graphs
via MVIS and GVIS. The most plausible explanation
for MOP’s failure is that the static model was simply
too large for the tool to handle.

For this evaluation, the objective was to push the
tools to their limits. When applied to larger Python
modules, the resulting graphs can become extremely
large. In the case of Numpy, we are reaching around
600 nodes and 8000 edges. This raises questions about
the practical utility of such an endeavor.

6 Conclusion

This work extends the Kieker observability frame-
work to improve its support for Python applications.
A combined analysis approach, integrating static and
dynamic analysis, was replicated.6 To implement this,
a custom analysis pipeline was designed using built-in
Kieker tools, alongside adaptations of existing com-
ponents and the development of new ones.

Throughout the process, inconsistencies in tool out-
puts and maintenance challenges were identified. To

7https://github.com/c0fec0de/anytree
8https://github.com/python-pillow/Pillow
4https://github.com/matplotlib/matplotlib
5https://github.com/scipy/scipy
6https://github.com/kieker-monitoring/

PythonCombinedAnalysis_replication-package

resolve these issues, solutions from prior research were
customized and integrated to better align with the
project’s requirements. A Python static analyzer
based on AST matching was developed specifically for
the pipeline. Furthermore, a more intuitive visualiza-
tion method was introduced, and limitations in cur-
rent layout tools were revealed, highlighting an area
for future improvement.

The next steps involve repairing the existing tool
suite (DAR, SAR, MOP, MVIS), whose build pro-
cess is currently broken in the current Kieker distribu-
tion, and moving away from Graphviz, which performs
poorly with large-scale graphs.

Acknowledgment This research is funded by the
Deutsche Forschungsgemeinschaft (DFG – German
Research Foundation), grant no. 528713834.

References

[1] D. Auber et al. “Tulip 5”. In: Encyclopedia of
Social Network Analysis and Mining. Springer,
Aug. 2017, pp. 1–28. doi: 10.1007/978- 1-
4614-7163-9_315-1.

[2] C. Wulf, W. Hasselbring, and J. Ohlemacher.
“Parallel and Generic Pipe-and-Filter Architec-
tures with TeeTime”. In: ICSAW. 2017, pp. 290–
293. doi: 10.1109/ICSAW.2017.20.

[3] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts. 2020. doi: 10.
1016/j.simpa.2020.100019.

[4] R. Jung et al. “Architecture Recovery from For-
tran Code with Kieker”. In: Softwaretechnik-
Trends. SSP ’22 43.1 (2023), pp. 38–40.

[5] S. Simonov et al. “Instrumenting Python with
Kieker”. In: Softwaretechnik-Trends. SSP ’22
43.1 (2023), pp. 26–28.

[6] S. Simonov. “Domain Specific Language Sup-
port for Kieker and OpenTelemetry Interoper-
ability”. Master’s thesis. Kiel University, 2024.

[7] D. Larrivain, S. Yang, and W. Hasselbring. Dy-
namic and Static Analysis of Python Software
with Kieker Including Reconstructed Architec-
tures. 2025. doi: arXiv:2507.23425.

[8] T. Seo. “UXsim: lightweight mesoscopic traffic
flow simulator in pure Python”. In: JOSS 10.106
(2025), p. 7617. doi: 10.21105/joss.07617.

[9] S. Yang et al. “The Kieker Observability Frame-
work Version 2”. In: ICPE ’25. Toronto ON,
Canada: ACM, 2025, pp. 11–15. doi: 10.1145/
3680256.3721972.

[10] H. Gulabovska and Z. Porkoláb. “Towards
More Sophisticated Static Analysis Meth-
ods of Python Programs”. In: Informat-
ics’2019, pp. 225–230. doi: 10 . 1109 /

Informatics47936.2019.9119307.

3

https://github.com/c0fec0de/anytree
https://github.com/python-pillow/Pillow
https://github.com/matplotlib/matplotlib
https://github.com/scipy/scipy
https://github.com/kieker-monitoring/PythonCombinedAnalysis_replication-package
https://github.com/kieker-monitoring/PythonCombinedAnalysis_replication-package
https://doi.org/10.1007/978-1-4614-7163-9_315-1
https://doi.org/10.1007/978-1-4614-7163-9_315-1
https://doi.org/10.1109/ICSAW.2017.20
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/arXiv:2507.23425
https://doi.org/10.21105/joss.07617
https://doi.org/10.1145/3680256.3721972
https://doi.org/10.1145/3680256.3721972
https://doi.org/10.1109/Informatics47936.2019.9119307
https://doi.org/10.1109/Informatics47936.2019.9119307

	Introduction
	Related Work
	General Pipeline
	Combined Analysis
	Dynamic Analysis
	Static Analysis
	Visualization

	Evaluation
	Conclusion

