
OpenTelemetry Instrumentation using Kotlin Multiplatform

Compiler Plugins

Fabian Schoenberger
Institute for System Software

Johannes Kepler University Linz, Austria

Markus Weninger
markus.weninger@jku.at

Institute for System Software
Johannes Kepler University Linz, Austria

Abstract

Achieving consistent performance tracing for Kotlin
Multiplatform (KMP) applications is challenging, as
conventional instrumentation techniques often rely on
platform-specific instrumentation agents that are not
universally applicable across Kotlin’s compilation tar-
get platforms: the JVM, JavaScript, and Native tar-
gets. This paper introduces a unified, compile-time al-
ternative: a Kotlin compiler plugin that automatically
injects OpenTelemetry-compliant tracing at compile
time. Our approach guarantees consistent instrumen-
tation that produces traces compatible with existing
observability tools across all Kotlin target platforms
from a single compilation pass.

1 Introduction

Tracing method execution times is a critical practice
in software development. Manual instrumentation of-
ten involves a considerable amount of boilerplate code
and/or non-standardized formats, while automated
approaches (such as load-time instrumentation) are
typically limited to a single platform (e.g., using Java
agents on the JVM). This reliance on platform-specific
tooling is fundamentally limiting for monitoring ap-
plications written in languages such as Kotlin, which
compile to various target platforms.

To address these challenges, Weninger [12] devel-
oped k-perf, a compiler plugin to instrument Kotlin
code at compile time. However, this plugin has a key
limitation: it uses a proprietary tracing format, mak-
ing it unable to integrate with standardized monitor-
ing tools. This paper builds upon this foundation by
extending the plugin to leverage the open-source ob-
servability standard, OpenTelemetry. The goal is to
generate OpenTelemetry-compliant traces for Kotlin
Multiplatform (KMP) applications, supporting tar-
gets including JVM, JavaScript, and Native. This
work enables seamless integration with established ob-
servability tools such as Jaeger or Zipkin.

2 Background

This section gives an overview of Kotlin’s compilation
process, compiler plugins, and OpenTelemetry.

Kotlin Compiler and Plugins Kotlin’s K2 com-
piler processes source code in multiple stages, as
shown in Figure 1. The source is first reduced
to an Abstract Syntax Tree (AST), which is then
transformed to Frontend Intermediate Representation
(FIR) primarily used for code analysis. FIR is trans-
formed to Backend Intermediate Representation (IR)
for code optimization and finally translated to the re-
spective target (e.g., JVM, JavaScript, Native) [3]. K2
supports user-provided extensions, i.e., compiler plu-
gins, for advanced code analyses (FIR) as well as code
for instrumentation (IR) at compile-time.

.kt

Source Code AST

FIR IR

K2 Compiler
JVM

JavaScript

Native

Targets

 Compiler Plugin

Figure 1: Overview of Kotlin’s compilation process.

IR plugins register an IrGenerationExtension in-
stance with the compiler, which provides the logic for
transforming the code. Transforming IR is achieved
by extending and traversing the IR tree, whereas dec-
larations (e.g., functions) can be modified using the
visitor pattern. This way, any changes to the code are
performed before translation to the specific targets.

OpenTelemetry OpenTelemetry (OTel) is a
widely used open-source observability standard that
enables tracing of applications. A trace represents
the path taken through an application and consists of
spans, where each span represent some time-measured
unit of work [10] (e.g., a database query or a function
call). These traces are then exported using the
OpenTelemetry Protocol (OTLP), which ensures
compatibility with a wide variety of monitoring
tools. Typically, these traces are sent to a central
OpenTelemetry Collector, which can forward them
to different backends. This approach decouples the
application from the monitoring backend, preventing
vendor lock-in and allowing monitoring tools to be
interchanged through simple configuration changes.

Our Kotlin Multiplatform OpenTelemetry compiler plugin can be found at
https://github.com/FabianSchoenberger/otel-plugin

https://github.com/FabianSchoenberger/otel-plugin

.kt

Source Code

IR

JVM

JavaScript

Native

Targets

Compiler Plugin

Collector

+ val exporter = …
+ val processor = …
+ val tracerProvider = …
+ val tracer = …
+ fun _startSpan() { … }
+ fun _endSpan() { … }
 …

fun foo() {
+ _startSpan()
 bar()
+ _endSpan()
}

fun main() {
+ _startSpan()
 foo()
+ _endSpan()
+ await(exporter)
}

a b c

Jaeger

Zipkin

...

Monitoring Backend

Figure 2: Overview of our compiler plugin’s functionality.

3 Compiler Plugin

Our plugin records every function call as an
OpenTelemetry span by automatically instrumenting
source code at compile-time. The plugin is also re-
sponsible for exporting these spans to an OTLP end-
point. Most fundamentally, the plugin may only add
code that can be translated to all Kotlin targets, i.e.,
our compiler plugin may only introduce dependencies
on libraries that are developed for KMP themselves.
Thus, we rely on a Kotlin Multiplatform port1 of the
Java OpenTelemetry Tracing API/SDK.

Figure 2 illustrates the plugin’s overall workflow
and its three key modifications to the IR: (a) the re-
quired OpenTelemetry components and helper func-
tions are created, (b) every function is instrumented
to open and close a span, and (c) the main function
additionally waits for all exports to finish before pro-
gram termination. An example function instrumenta-
tion is shown in Listing 1 (the actual instrumentation
happens on IR level, not source code level). To main-
tain the function call hierarchy within the trace, the
Context is retrieved and used to define the new span’s
parent-child relationship. The original function body
is wrapped in a try/finally block, which guarantees
that the span is closed correctly even if the function
terminates with an exception.

1 // before instrumentation
2 fun add(a: Int , b: Int) = a + b
3 // after instrumentation
4 fun add(a: Int , b: Int): Int {
5 val context = Context.current ()
6 val span = _startSpan("add(Int , Int)", context)
7 try { return a + b }
8 finally { _endSpan(span , context) }
9 }

Listing 1: An example of an instrumented function.

The modified IR is then translated into the desired
target-specific code. Our plugin currently supports
the JVM, JavaScript, and Native targets.

At run time, generated spans are buffered by a
BatchSpanProcessor and sent in batches by a cus-
tom OTLP exporter, an optimization that avoids the
high network overhead of sending each span individ-
ually. This exporter2 had to be implemented for this

1https://github.com/dcxp/opentelemetry-kotlin
2https://github.com/FabianSchoenberger/otlp-exporter

project, as no official KMP-compatible OTLP/HTTP
exporter was available at the time of implementation.
It sends the spans asynchronously to a configured Col-
lector endpoint according to the OTLP specification
using the KMP HTTP client library Ktor. Finally, the
Collector processes and forwards all received spans to
one or more monitoring backends (e.g., Jaeger, Zip-
kin) based on its configuration. These backends then
store and visualize the generated traces.

4 Evaluation and Discussion

To verify our plugin’s output and measure its perfor-
mance impact, we conducted a similar benchmark as
used for k-perf [12]: tracing every method call of a
Game of Life implementation. We wanted to inves-
tigate whether this is also possible with our Open-
Telemetry plugin and how much overhead this intro-
duces. The benchmark runs for 500 steps, resulting in
approximately two million function calls (illustrated
in Figure 3). For each target platform, the applica-
tion was executed 100 times to increase statistical sig-
nificance. During the benchmark, all generated traces
were sent to a locally running OpenTelemetry Collec-
tor, forwarding them to a Jaeger backend.

Figure 4 shows an example trace with five simu-
lated steps visualized in Jaeger, where the hierarchy
of the spans mirrors the application’s call graph.

Performance Implications The benchmark re-
veals an enormous performance overhead, with run-

main()

play()

set() print() step()

shouldBecomeLive()

neighbors()

isValidPosition()

1

2
5 500

200,000

200,000

1,600,000

1

Figure 3: Call graph of Game of Life with 500 steps.

https://github.com/dcxp/opentelemetry-kotlin
https://github.com/FabianSchoenberger/otlp-exporter

Figure 4: Example of a Game of Life trace in Jaeger.

time slowdowns ranging from 255x on the JVM to
19,300x on Native (Linux) targets. This corresponds
to an overhead per method call of 4.3 µs (JVM) to
35.5 µs (Native), indicating room for improvement in
future work [9]. Another observation is that the high
volume of spans overwhelms the queues of the Collec-
tor and the backend, leading to significant data loss.
These findings demonstrate that, opposed to a custom
trace format [12], recording every function call using
OpenTelemetry is fundamentally impractical.

One way to circumvent this limitation is using
a more performant intermediate trace format and
storage that allows for translation to spans [10]
during periods of low activity. A more sophisti-
cated solution would be to implement adaptive sam-
pling [7], i.e., selectively and dynamically enabling
and disabling span recording for individual frequently-
executed functions. This could significantly reduce
the volume of spans while still recording deep call
stacks regularly for more detailed analyses.

Asynchronous Operations One current key lim-
itation is the handling of asynchronous operations.
The plugin relies on a singleton object to track
the active span’s context. This approach breaks
when instrumenting multi-threaded programs, includ-
ing suspend functions (built around Kotlin corou-
tines). Coroutines can resume on different threads,
which can lead to a broken parent-child relationship
in the span hierarchy.

The solution to this limitation is to modify our ap-
proach of context propagation. Instead of a singleton
object, we could additionally instrument each func-
tion’s parameters to include the parent span’s context.
This approach, while more complex, would prevent
any race conditions from occurring.

5 Related Work

Besides OpenTelemetry, the de-facto observability
standard, numerous other tracing tools exist. Janes
et al. [6] analyzed 30 different tools, highlighting their
features and trade-offs. This includes, for example,
Kieker [4, 14], an observability framework often used
for research on tracing overhead [5, 9, 11, 13].

Regarding instrumentation strategy, this work’s
capture every method call -approach contrasts with
several alternatives. For example, Pfeffer and
Weninger [8] perform annotation-based modifications
in Kotlin, i.e., instrumenting only functions explicitly
marked by a developer. In their work, they present

various ways on how to instrument Kotlin programs.
While they clearly position compiler plugins as the
most flexible (but also most complex approach), non-
multiplatform Kotlin programs purely targeted at the
JVM can be instrumented at load-time similarly to
Java programs using Java agents and bytecode modi-
fication libraries such as Javassist [1, 2].

6 Summary and Outlook

This paper demonstrated the feasibility of us-
ing a compiler plugin to automatically generate
OpenTelemetry-compliant traces for Kotlin Multi-
platform applications. While functionally successful,
our proof-of-concept revealed that an exhaustive, per-
function tracing strategy introduces a significant per-
formance overhead. Future work must therefore pri-
oritize two key areas: (1) implementing performance
optimizations, such as adaptive sampling to reduce
the volume of generated spans, and (2) adding sup-
port for multi-threading and asynchronous operations
by correctly propagating span context.

References
[1] S. Chiba. “Load-Time Structural Reflection in Java”. In:

ECOOP. 2000.

[2] S. Chiba and M. Nishizawa. “An Easy-to-Use Toolkit for
Efficient Java Bytecode Translators”. In: GPCE. 2003.

[3] J. Stanier and D. Watson. “Intermediate representations
in imperative compilers: A survey”. In: ACM Comput.
Surv. 45.3 (2013).

[4] W. Hasselbring and A. van Hoorn. “Kieker: A Monitor-
ing Framework for Software Engineering Research”. In:
Softw. Impacts 5 (2020).

[5] D. G. Reichelt, S. Kühne, and W. Hasselbring. “Over-
head Comparison of OpenTelemetry, inspectIT and
Kieker”. In: SSP. 2021.

[6] A. Janes, X. Li, and V. Lenarduzzi. “Open Tracing
Tools: Overview and Critical Comparison”. In: J. Syst.
Softw. 204 (2023).

[7] J. Mertz and I. Nunes. “Software Runtime Monitoring
with Adaptive Sampling Rate to Collect Representative
Samples of Execution Traces”. In: J. Syst. Softw. 202
(2023).

[8] D. Pfeffer and M. Weninger. “On the Applicability of
Annotation-Based Source Code Modification in Kotlin”.
In: MPLR. 2023.

[9] D. G. Reichelt, S. Kühne, and W. Hasselbring. “Towards
Solving the Challenge of Minimal Overhead Monitor-
ing”. In: ICPE. 2023.

[10] D. G. Reichelt et al. “Interoperability From Kieker to
OpenTelemetry: Demonstrated as Export to ExplorViz”.
In: SSP (2024).

[11] D. G. Reichelt et al. “Overhead Comparison of Instru-
mentation Frameworks”. In: ICPE. 2024.

[12] M. Weninger. “Tracing Performance Metrics in Kotlin
Multiplatform Projects via Compile-Time Code Instru-
mentation”. In: SSP (2024).

[13] S. Yang, D. G. Reichelt, and W. Hasselbring. “Evaluat-
ing the Overhead of the Performance Profiler Cloudpro-
filer With MooBench”. In: SSP (2024).

[14] S. Yang et al. “The Kieker Observability Framework Ver-
sion 2”. In: ICPE. 2025.

	Introduction
	Background
	Compiler Plugin
	Evaluation and Discussion
	Related Work
	Summary and Outlook

