
Simplifying Kotlin Compile-Time Code Instrumentation

Lorenz Bader
Institute for System Software

Johannes Kepler University Linz, Austria

Markus Weninger
markus.weninger@jku.at

Institute for System Software
Johannes Kepler University Linz, Austria

Abstract

Since Kotlin can be translated for different targets
such as the JVM, WebAssembly, or Native, tradi-
tional load-time instrumentation would have to be
re-implemented for each such compilation target. A
target-agnostic solution is to instrument code at the
compiler’s Intermediate Representation (IR) level.
However, the official compiler API for this is low-
level and verbose, posing a significant barrier. We
present KIRHelperKit, a library that simplifies Kotlin
compile-time code instrumentation. It drastically re-
duces the number of lines of code needed to de-
velop custom multi-platform performance profilers
that work seamlessly across all Kotlin targets, signif-
icantly reducing development effort.

1 Introduction

With Kotlin’s rising usage across multiple plat-
forms [4], new challenges for performance instrumen-
tation arise. Traditional run-time instrumentation
techniques, such as those based on Java bytecode [6],
have demonstrated that expressive and efficient load-
time instrumentation is possible for JVM programs.
However, these approaches are tied to JVM bytecode
and cannot be applied across Kotlin’s diverse compi-
lation targets such as JavaScript or WebAssembly.

Compile-time instrumentation via Kotlin’s Inter-
mediate Representation (IR) compiler plugins offer a
target-agnostic solution. By injecting measurement
code during compilation, IR plugins avoid run-time
dependencies and support consistent tracing across
platforms. However, the Kotlin IR API exposes sig-
nificant complexity due to its low-level abstractions
and limited documentation, rendering even basic tasks
such as generating function calls error-prone and diffi-
cult to accomplish. These difficulties have been noted
in prior research, which identifies the steep learning
curve as a key barrier to adoption [5].

To overcome these challenges, this work introduces
the KIRHelperKit, a utility library simplifying IR plu-
gin development. Our contributions are: (1) a struc-
tured and well documented abstraction layer for com-
mon IR tasks; (2) a rewritten version of an existing
tracing plugin using our DSL, showcasing code reduc-
tion; and (3) a small usability study demonstrating
improved readability and developer experience.

2 The Kotlin Compiler and its Plugins

This section outlines Kotlin’s compilation process and
discusses its connection to IR plugin development.

Compilation Process Figure 1 depicts Kotlin’s
K2 compiler. It transforms source code into a fron-
tend intermediate representation (FIR) primarily used
for static code and control flow analysis. FIR is
then transformed to backend Intermediate Represen-
tation (IR) for code optimization and finally trans-
lated to the respective target (e.g., JVM, JavaScript,
Native) [2].

Source Code

1. Target-specific code

2. Target-specific code
IR

FIR

Compiler Frontend

Compiler Backend

Optimizations +
Instrumentation

Figure 1: Overview of the Kotlin compilation process.

IR (Backend) Plugins Compiler plugins (either
working on the FIR or IR) can be used to perform
additional operations at compile-time. However, it is
not possible to freely modify code in a FIR plugin
without using annotations in the user code [8]. In
contrast, (backend) IR plugins act as the last step be-
fore target-specific code generation. They have access
to the complete, low-level constructs making up the
compiled program, making them the perfect tool for
target-agnostic instrumentation [9].

IR plugins extend the IrGenerationExtension in-
terface, which allows access to all compiling Kotlin
files and enables injection of instrumentation code.
Norman [3] provides a comprehensive tutorial for get-
ting started with IR plugin development. However,
backend compiler plugins still have some limitations.
They can only modify Kotlin source code, thus pre-
venting the instrumentation of Java source code or
pre-compiled dependencies.

3 KIRHelperKit: IR Instrumentation

Instrumentation is often used to collect performance
metrics such as method run times. This section intro-

KIRHelperKit (tagged version of 02.08.2025) can be found at
https://github.com/NeonMika/k-perf/tree/SSP_2025_KIRHelperKit

https://github.com/NeonMika/k-perf/tree/SSP_2025_KIRHelperKit


duces our KIRHelperKit (Kotlin IR Helper Kit) and
outlines how it simplifies common IR instrumentation
tasks through high-level abstractions.

Feature Overview Developing our library, we fo-
cused on common instrumentation actions, including:
(1) Simplified search for classes, functions, proper-
ties and constructors; (2) Easier generation of func-
tion calls and call chains; (3) stringBuilder and string
concatenation abstractions for fluent development;
(4) Creation of global variables without boilerplate
code; (5) Built-in file support to reduce complexity.

Simplified, Unified Class and Function Search
Listing 1 illustrates the conventional method for re-
trieving IR declarations. It looks up a function using
CallableId, using FqName and Name.identifier in
conjunction with manual argument filtering.

1 val addFn =
2 pluginContext.referenceFunctions(CallableId(
3 FqName("java.util.concurrent.atomic"),
4 FqName("AtomicInteger"),
5 Name.identifier("getAndAdd")
6 )).single { func ->
7 func.valueParameters.size == 1 &&
8 func.valueParameters [0]. type ==
9 pluginContext.irBuiltIns.intType }

Listing 1: Function search using original IR API.

1 val addFn = pluginContext.findFunction(
2 """java/util/concurrent/atomic/
3 AtomicInteger.getAndAdd(int)""")

Listing 2: Function search using KIRHelperKit.

In contrast, Listing 2 demonstrates our approach,
which employs a structured search string format for
concise and unified declaration resolution:

findClass: my/package/class.inner
findConstructor: my/package/class.inner(params...)
findFunction: my/package/class.inner.func(params...)
findProperty: my/package/class.inner.prop

Unused parts (such as the inner class part) can
be omitted. Generics, wildcards, and nullable func-
tion parameters (using ?) are supported. To avoid
unnecessary long search strings, additional extension
methods are implemented on variables, classes, etc.,
enabling localized searches. For example, Listing 3
finds the same addFn as Listing 2.

1 val atomicInt = pluginContext.findClass(
2 "java/util/concurrent/atomic/AtomicInteger")
3 val addFn = atomicInt.findFunction(pluginContext ,
4 "getAndAdd(int)")

Listing 3: Local function search using KIRHelperKit.

These abstractions avoid the need to differentiate
between CallableId (functions), ClassId (classes),
FqName, Name.identifier, ..., which often lead to
confusion in the original IR API.

Simplified Function Calling and Chained Func-
tion Calls Listing 4 shows how IR function invoca-
tion typically requires nested irCall expressions, con-
structed in reverse order, and careful receiver manage-
ment. As demonstrated in Listing 5, KIRHelperKit

enables top-down composition of chained calls using
implicit receivers, reducing cognitive overhead associ-
ated with nesting and manual receiver configuration.

1 // goal: building "counter.getAndAdd (2).toString ()"
2 val toStringFn = ... // 4 SLOCs additionally needed
3 val toStringCall = irCall(toStringFn).apply {
4 dispatchReceiver = irCall(addFn).apply {
5 dispatchReceiver =
6 irGetField(null , counter)
7 putValueArgument (0, irInt (2))
8 }
9 }

Listing 4: Chained calls using original IR API.

1 enableCallDSL(pluginContext) {
2 val toStringCall = counter.call(addFn , 2)
3 .call("toString ()")
4 }

Listing 5: Chained calls using KIRHelperKit.

Various receiver kinds (variables, properties, re-
sults of other function calls, etc.) can be used as
targets of our .call() helper function. These tar-
gets are automatically set as dispatchReceiver (i.e.,
the function’s this) or extensionReceiver depend-
ing on the kind of function being called. Arguments
are automatically converted to IrExpression objects
(for example, the constant 2 manually had to be con-
verted to an IrConst using irInt() in Listing 4).

Furthermore, the function to call can not only be
provided as a function object (see addFn in Listing 5)
but also as a function search string (see "toString()"
in Listing 5). Using a search string automatically
looks up the respective function in the receiver.

The DSL can be used in the most common places
where call construction takes place, such as function
bodies or variable initialization. It is enabled using a
lambda with receiver (enableCallDSL).

Minifying Common Code Patterns Common
patterns such as string concatenation or file opera-
tions require considerable boilerplate when using the
original IR API. For example, opening and append-
ing to a write-only file in a multi-platform fashion
(through so-called sinks) approximately takes 30 lines
of code if developed using the original IR API.

1 val irFileHandle = IrFileWriter(pluginContext ,
2 firstFile , "file.txt")
3 irFileHandle.writeData(myString)

Listing 6: File operation using KIRHelperKit.

With KIRHelperKit, file handling is abstracted and
therefore becomes much more expressive, as shown in
Listing 6. IrFileWriter encapsulates all necessary
logic for resolving functions and constructing sinks,
providing a simple interface for creating textual out-
put to files. Complementarily, IrFileReader sup-
ports file input operations through a similar abstrac-
tion model. Although not shown in this example,
we also provide a dedicated IrStringBuilder, which
greatly simplifies text handling.

Such abstractions reduce code size and complexity,
enabling developers to focus on instrumentation logic
rather than low-level IR manipulation.



4 Evaluation

We evaluate the impact of KIRHelperKit in two ways:
(1) by re-implementing an existing compiler plugin [9]
using its feature set and (2) by conducted a usability
study where participants were asked to implement a
new small compiler plugin using KIRHelperKit.

Quantifying Code Reduction We compare the
code length of three plugin versions: (1) The original
plugin [9], (2) a version using the full helper kit, and
(3) a version not using the IRFileWriter abstrac-
tion (to inspect possible code savings for a broader
variety of compiler plugins, as much of the plugin
logic involves file I/O). We measured the plugins’
generate(...) method (responsible for instrumen-
tation), excluding complimentary setup code. Table 1
shows that KIRHelperKit reduces plugin code size sig-
nificantly. We achieved 34% less source lines with ba-
sic utilities and less than 50% with full integration.

Plugin Version SLOCs Red. (%)

(1) Original 993 –
(2) Function + Find Utils 654 34.1%
(3) Full Helper Kit 483 51.4%

Table 1: Comparison of generate(...) method size
reduction across plugin versions.

Assessing Developer Experience To assess de-
veloper experience and usability of KIRHelperKit, we
conducted a study involving six participants1. Three
participants had prior experience with Kotlin com-
piler plugins (incl. one expert), three did not. They
were timed at implementing a small compiler plugin
and provided feedback in a structured interview.

Participants received an IntelliJ project including
the KIRHelperKit, a demo plugin, and a plugin scaf-
fold for the study. First, an introduction to compiler
plugins and IR transformations was given, followed
by a presentation of the demo plugin showcasing the
helper kit’ capabilities. The participants were then
asked to develop a similar plugin that (1) creates a
global AtomicInteger, (2) increments it at the be-
ginning of each method, and (3) prints its content at
the end of the main method (i.e., printing how many
functions have been called). This invovled essential
features of the KIRHelperKit such as field and call
creation, function lookup and expression insertion.

All participants completed the task successfully
without asking IR-related questions. Times ranged
from 2:17 to 10:30 min (mean ∼ 7:19 min). Partici-
pants described the KIRHelperKit as simple and con-
siderably less verbose than native IR APIs. Utilities
such as findFunction and createField were consid-
ered self-explanatory. Challenges involved knowing
when to turn on the call DSL and somewhat unintu-
itive search strings (separating packages with slashes).

1https://doi.org/10.5281/zenodo.16785498

Participants also named the inclusion of examples in
the documentation and implementing further abstrac-
tions for common code constructs.

This verifies that the KIRHelperKit lowers the en-
try barrier for first time IR users while providing expe-
rienced developers with cleaner and faster workflows.

5 Related Work

JVM frameworks such as ASM, AspectJ, DiSL, Javas-
sist, or BISM [6] provide powerful run-time instru-
mentation, while Kotlin tools like KSP [10] and
Arrow Meta [7] support annotation-based source
transformations. However, neither approach enables
cross-platform, compile-time instrumentation, which
KIRHelperKit delivers by bringing expressive ab-
stractions to Kotlin’s IR across JVM, JavaScript,
WebAssembly, and native.

6 Summary and Outlook

This paper demonstrated the capabilities of the
KIRHelperKit, a utility library that simplifies com-
mon instrumentation patterns in Kotlin IR compiler
plugin development. Our evaluation displayed signifi-
cant reduction in code size and a reduced entry barrier
for IR plugin development, allowing novice developers
to implement complex instrumentation tasks.

Nevertheless, feedback revealed room for additional
simplifications. Thus, future work will focus on an-
alyzing existing compiler plugins, identifying gaps,
and introducing additional transformation capabili-
ties, such as automated injection of instrumentation
code in functions matching a specific signature [1].

References
[1] J. Seyster et al. “Aspect-Oriented Instrumentation with

GCC”. In: RV. 2010.

[2] J. Stanier and D. Watson. “Intermediate representations
in imperative compilers: A survey”. In: ACM Comput.
Surv. 45.3 (2013).

[3] B. Norman. Writing Your Second Kotlin Compiler Plu-
gin. https://blog.bnorm.dev. 2020.

[4] R. Nagy. Simplifying Application Development with
Kotlin Multiplatform Mobile. Packt Publishing, 2022.

[5] D. Pfeffer and M. Weninger. “On the Applicability of
Annotation-Based Source Code Modification in Kotlin”.
In: MPLR. 2023.

[6] C. Soueidi, M. Monnier, and Y. Falcone. “Efficient and
expressive bytecode-Level instrumentation for Java pro-
grams”. In: J. STTT 25.3 (2023).

[7] The Arrow Authors. Arrow Meta: Functional Compan-
ion to Kotlin’s Compiler. https://github.com/arrow-
kt/arrow-meta/. 2023.

[8] JetBrains. FIR Plugins API. https : / / github . com /

JetBrains / kotlin / blob / master / docs / fir / fir -

plugins.md. 2024.

[9] M. Weninger. “Tracing Performance Metrics in Kotlin
Multiplatform Projects via Compile-Time Code Instru-
mentation”. In: SSP. 2024.

[10] JetBrains. Kotlin Symbol Processing (KSP). https://
github.com/google/ksp. 2025.

https://doi.org/10.5281/zenodo.16785498
https://blog.bnorm.dev
https://github.com/arrow-kt/arrow-meta/
https://github.com/arrow-kt/arrow-meta/
https://github.com/JetBrains/kotlin/blob/master/docs/fir/fir-plugins.md
https://github.com/JetBrains/kotlin/blob/master/docs/fir/fir-plugins.md
https://github.com/JetBrains/kotlin/blob/master/docs/fir/fir-plugins.md
https://github.com/google/ksp
https://github.com/google/ksp

	Introduction
	The Kotlin Compiler and its Plugins
	KIRHelperKit: IR Instrumentation
	Evaluation
	Related Work
	Summary and Outlook

