Detection of Performance Changes in MooBench Results
Using Nyrkio on GitHub Actions

Shinhyung Yang!, David Georg Reichelt?, Henrik Ingo®, and Wilhelm Hasselbring?

1Kiel University, Kiel, Germany
2Lancaster University Leipzig / URZ Leipzig, Leipzig, Germany
3Nyrkio Oy, Jarvenpii, Finland

Abstract

In GitHub with its 518 million hosted projects, per-
formance changes within these projects are highly rel-
evant to the project’s users. Although performance
measurement is supported by GitHub CI/CD, perfor-
mance change detection is a challenging topic.

In this paper, we demonstrate how we incorporated
Nyrkié to MooBench. Prior to this work, Moobench
continuously ran on GitHub virtual machines, mea-
suring overhead of tracing agents, but without change
detection. By adding the upload of the measurements
to the Nyrkio change detection service, we made it
possible to detect performance changes. We identified
one major performance regression and examined the
performance change in depth. We report that (1) it is
reproducible with GitHub actions, and (2) the perfor-
mance regression is caused by a Linux Kernel version
change.

1 Introduction

GitOps is a specific implementation and extension of
DevOps practices, particularly focused on using Git
as the single source of truth for infrastructure and ap-
plication deployments. GitOps provides a set of devel-
opment operations that embody the CI/CD tasks [7].
GitOps integrates DevOps operations of a software
project with Git operations, e.g., with GitOps, a git-
push action triggers a user-defined CI/CD pipeline,
specific to the software project’s repository.

GitHub has become the biggest GitOps platform
for day-to-day development in open-source and en-
terprise projects. GitHub reports that it hosts
518 million projects, including one billion contribu-
tions. GitHub Actionsis a CI/CD platform that in-
cludes both CI/CD pipelines and GitHub runners:
Azure VM resources that run actions. The github-
action-benchmark tool! is a continuous benchmarking
tool for GitHub CI/CD; it is provided as a GitHub ac-
tion, which receives the benchmarking data, and plots
the result on a GitHub.io page. It is useful for com-
paring performance differences between git pushes,

Thttps://github.com/benchmark-action/
github-action-benchmark

where the performance is not only impacted by soft-
ware changes, but also by the VMs.

Benchmarks can be used for comparing different
methods, techniques and tools [5], and MooBench [2,
6] is used for comparing tracing agents of monitoring
frameworks such as Kieker [13].

In this paper, we demonstrate that performance
change detection of MooBench’s measurement results
works by running the Nyri6 change detection ser-
vice, integrated with MooBench’s GitHub actions
workflow. Nyrkio is a change detection service pro-
vided as a GitHub action. It uses the E-Divisive
Means algorithm to detect changes [4]. In the ex-
amined versions, we see that the execution time of
Kieker’s AspectJ tracing agent increased significantly
on GitHub’s ubuntu-latest image, although the in-
volved commits did not contain any changes to the
software. We confirmed the detected change by repro-
ducing and analyzing the performance change locally.

Our contributions for this paper are as follows:
(1) we integrated the Nyrkié change detection ser-
vice to continouously analyse the MooBench bench-
marking, (2) we discovered and replicated the perfor-
mance change on GitHub runners, and (3) we config-
ured GitHub-hosted and self-hosted runners for repli-
cating the results.

2 Background

Continuous Benchmarking aims to continuously
detect performance changes in the target system us-
ing performance measurements [3, 4]. MooBench is
designed to continuously benchmark the overhead of
tracing agents, initially on Jenkins [2] using a bare
metal server, and extended to GitHub actions [9] using
GitHub-hosted VMs. The github-action-benchmark
is a plugin application native to the GitHub CI/CD,
enabling collection and visualization of data from con-
tinuous benchmarking. Nyrkio extends github-action-
benchmark, incorporating the E-Divisive algorithm to
detect performance changes, and utilizing the GitHub
Issues board to notify important detection results.

E-Divisive Means Algorithm in Nyrkié Mat-
teson and James first introduced the E-Divisive al-

https://github.com/benchmark-action/github-action-benchmark
https://github.com/benchmark-action/github-action-benchmark

g 4500 max. 35624 ::
% 4000 | e T W
&2 3500~ N, [
23000 wwTTEREE =3
£ 2500 !
S 494ee80 b422742 59d51e3
& 560b408 05f1c0
2730304 cf3c08d

Commit IDs (listed by date; from May 2024 to Aug 2025)

Figure 1: Our investigation focuses on the change be-
tween ¢£3c08d and 59d51e3 (--). Each data point
represents the execution time of a Benchmark run.
Values > 4500 ns are clipped and the maximum value
35624 is caused by development code changes.

gorithm, which detects change points in the given nu-
merical sequence [1]. We used Nyrkit’s E-Divisive im-
plementation to validate that our initial finding on the
performance change between two commits as shown
in Figure 1. In Figure 2, produced by Nyrkio, we see
that our finding is indeed recognized as a performance
change by E-Divisive Means: the diagram shows four
change detections in four red dots, and the right-most
dot on January 9, 2025 at 20:04 matches the per-
formance change between cf£3c08d and 59d51e3 in
Figure 1. To produce it, we configured the p-value
with 0.001, which finds fewer change points, decreas-
ing false positives. Setting the change magnitude with
5%, Nyrkio only lists change points bigger than that.

3 Performance Change Examination

In this section, we present the performance change
detection, our experiments for examining one change
and the analysis of the experimental data.

3.1 Previously Detected Changes

In May 2024, MooBench started continuous bench-
marking on the GitHub CI/CD [9]. In addition to
git-push, GitHub actions allow for triggering a CI/CD
pipeline with a scheduler to collect the data period-
ically. In March 2025, we noticed a performance re-
gression of Kieker’s AspectJ agent from the GitHub
CI/CD results. The regression appeared between two
benchmark runs triggered by two git-pushes, noted
by two commit signatures, c£3c08d and 59d51e3. We
made those pushes to install the R package, which was
pre-installed in the old ubuntu-22.04 image, but ob-
soleted in the new ubuntu-24.04 image, a decision by
GitHub.? Our first intuition was that the performance
regression was made by the Ubuntu version changes.

3.2 Experimental Setup

To replicate the performance change between two
commit signatures c£3c08d and 59d51e3, we deployed

%https://github.com/actions/runner-images/issues/
10636

ns
N
o
o
o
o

Figure 2: Nyrkit’s detected performance changes

eight runners in our GitHub Actions workflow: four
GitHub-hosted runners and four self-hosted runners.
All eight VMs were configured to start either by a
git-push, or a scheduler that starts them every three
hours.

GitHub-hosted runners: we use four standard
GitHub-hosted runners. Each deploys a Linux im-
age: two runners use the ubuntu-22.04 image, and
the other two use the ubuntu-24.04 image. Kozlov
reports that a standard GitHub-hosted runner has
4 vCPUs and 16 GiB RAM, which is equivalent to
the t4g.xlarge instance on AWS [12].

Self-hosted runners: we use four self-hosted run-
ners. Our self-hosted runners are four virtual ma-
chines with an identical spec; each has 4 vCPUs and
8 GiB RAM. The VMs belong to the same hosting
server, which has 2 Xeon E5-2650 CPUs and 94 GiB
RAM. Two of them use Ubuntu 22.04 and the other
two use Ubuntu 24.04.

MooBench: We benchmarked the Kieker AspectJ
agent, where we observed the performance change.
MooBench uses its default configuration to run the
Kieker AspectJ agent: one iteration measures the du-
ration of a Java method, which recursively calls itself
10 times. Omne loop includes two million iterations,
and the entire benchmark consists of 10 loops, and
the system rests for 30s at the end of each loop.

3.3 Statistical Analysis

Evaluation method: For all pairs of compared
data series, we checked their normality using the
Shapiro-Wilk normality test. The resulting w-value
close to 1.00 confirms the normality of the compared
data. We used the paired t-test to verify whether the
difference of the two compared data series is statisti-
cally significant or not. The resulting p-value < 0.05
means the difference is significant.

Validation: We elaborated the results in Figure 3.
First, we validated that the software change was not
the cause of the performance change. The (w,p)
between the two execution time series by commits
c£3c08d and 59d51e3 are (0.96,0.07) (22.04/self),

https://github.com/actions/runner-images/issues/10636
https://github.com/actions/runner-images/issues/10636

z
=
<5}
g20
«EG
52¢ »a
= a
5e
c£3c08d: ©22.04/self ©24.04/self ©22.04/GitHub ©24.04/GitHub

59d51e3: ©22.04 /self ©24.04/self ©22.04/GitHub ©24.04/GitHub

Figure 3: Measurements at commits c£3c08d (=) and
59d51e3 (). The boxplot shows the distribution of
execution time measurements per runtime environ-
ment.

(0.98,0.65) (24.04/self), (0.98,0.65) (22.04/GitHub),
and (0.98,0.49) (24.04/GitHub). Using our method,
the compared data series are normally distributed,
and the difference of comparisons are not significant.
Second, we validated our assumption both on GitHub-
hosted runners and self-hosted runners by compar-
ing two execution time series by two Ubuntu ver-
sions 22.04 and 24.04: (0.99,0.001966 284) (GitHub-
hosted) and (0.99,1.368409 x 107°0) (self-hosted).
In the future, we will investigate Ubuntu software
changes and evaluate the differences, and also validate
whether this is related to different kernel versions.

4 Related Work

The E-Divisive means algorithm was introduced in [1].
The efforts to integrate E-Divisive means algorithms
to CI/CD has followed [4, 8, 11]. Regression testing
in continuous integration is investigated in [3]. They
utilize unit testing for regression testing, which com-
pares two different code versions. Kozlov [12] did a
comprehensive analysis on GitHub-hosted VMs and
compared them to the equivalent AWS EC2 instances,
and self-hosted VMs. Nyrkit’s GitHub action tool? is
based on the github-action-benchmark tool. Extend-
ing the MooBench CI/CD to GitHub and the use of
github-action-benchmark discussed in [10].

5 Conclusion and Future Work

In this work, we discussed how to continuously de-
tect performance changes for MooBench. Using the
Nyrkié change detection, we identified a significant
performance change. To show the performance change
does not only occur on GitHub-hosted VMs, we repli-
cated the performance change on self-hosted VMs in
our local servers too. In the future, we will further
investigate on the performance change, and use the
updated MooBench GitHub workflow to examine re-
gressions caused by source code changes of the tracing
agents.

Acknowledgment This research is funded by the
Deutsche Forschungsgemeinschaft (DFG — German

Shttps://github.com/nyrkio/github-action-benchmark

Research Foundation), grant no. 528713834.

References

1]

[10]

[11]

D. S. Matteson and N. A. James. “A Non-
parametric Approach for Multiple Change Point
Analysis of Multivariate Data”. In: Journal of
the American Statistical Association 109.505
(2014). DOI: 10.1080/01621459.2013.849605.

J. Waller, N. C. Ehmke, and W. Hasselbring.
“Including Performance Benchmarks into Con-
tinuous Integration to Enable DevOps”. In:
SIGSOFT Softw. Eng. Notes 40.2 (2015). DOI:
10.1145/2735399.2735416.

D. G. Reichelt, S. Kiithne, and W. Hasselbring.
“PeASS: A Tool for Identifying Performance
Changes at Code Level”. In: ASE '19. 2019. DOTI:
10.1109/ASE.2019.00123.

D. Daly et al. “The Use of Change Point Detec-
tion to Identify Software Performance Regres-
sions in a Continuous Integration System”. In:
ICPE. 2020. por: 10.1145/3358960.3375791.

W. Hasselbring. “Benchmarking as Empirical
Standard in Software Engineering Research”.
In: FASE. 2021. por: 10 . 1145 / 3463274 .
3463361.

D. G. Reichelt, S. Kiihne, and W. Hassel-
bring. “Overhead Comparison of OpenTeleme-
try, inspectIT and Kieker”. In: SSP ’21. pID:
Vo1-3043. CEUR Workshop Proceedings, 2021.

F. Beetz and S. Harrer. “GitOps: The Evolution
of DevOps?” In: IEEE Software 39.4 (2022).
DOI: 10.1109/MS.2021.3119106.

M. Fleming et al. “Hunter: Using Change Point
Detection to Hunt for Performance Regres-
sions”. In: ICPE ’23. ACM, 2023. por: 10.1145/
3578244 .3583719.

D. G. Reichelt, R. Jung, and A. van Hoorn.
“Overhead Measurement Noise in Different
Runtime Environments”. In: SSP ’24. PID:
20.500.12116/45533. 2024.

D. G. Reichelt et al. “Overhead Comparison
of Instrumentation Frameworks”. In: ICPE ’24.
2024. poI: 10.1145/3629527 .3652269.

H. Ingo. 8 Years of Optimizing Apache Otava:
How disconnected open source developers took
an algorithm from n3 to constant time. 2025.
DOI: 10.48550/arXiv.2505.06758.

I. Kozlov. “A comparative study of GitHub-
hosted, self-hosted, and Kubernetes-based
GitHub Runners for web applications GitHub
Actions workflows”. PID: 10024/882579. 2025.

S. Yang et al. “The Kieker Observability Frame-
work Version 2”. In: ICPE ’25 Companion. 2025.
DOI: 10.1145/3680256.3721972.

https://github.com/nyrkio/github-action-benchmark
https://doi.org/10.1080/01621459.2013.849605
https://doi.org/10.1145/2735399.2735416
https://doi.org/10.1109/ASE.2019.00123
https://doi.org/10.1145/3358960.3375791
https://doi.org/10.1145/3463274.3463361
https://doi.org/10.1145/3463274.3463361
https://ceur-ws.org/Vol-3043/
https://doi.org/10.1109/MS.2021.3119106
https://doi.org/10.1145/3578244.3583719
https://doi.org/10.1145/3578244.3583719
https://dl.gi.de/handle/20.500.12116/45533
https://doi.org/10.1145/3629527.3652269
https://doi.org/10.48550/arXiv.2505.06758
http://www.theseus.fi/handle/10024/882579
https://doi.org/10.1145/3680256.3721972

	Introduction
	Background
	Performance Change Examination
	Previously Detected Changes
	Experimental Setup
	Statistical Analysis

	Related Work
	Conclusion and Future Work

