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Wirth's Law
Software gets slower more rapidly 
than hardware becomes faster.
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Wirth's Law & The Lost Linearity

THESIS:  The Past: Linear scaling with complexity: O(n) vs. Today:
                Exponential complexity: O(n^2)

The Past:    
Software in the 90‘s on DOS machines = single threaded, nearly 
linear dependency to cpu clock rate

e.g.:   DOS Game on 486 @ 33 MHz has 25 fps, but >50 fps @ 66 MHz

Today:
Software often multithreaded, multitasking OS, runs on CPU & GPU
= overhead by multithreading + abstraction layers + async I/O
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Why the Complexity Exploded

> Multithreading Overhead: 
> more CPU cores != more speed
> more coordination, more waiting for locks, more 'management' work by the operating system

> Abstraction Layers: 
> e.g. frameworks, containers, virtual machines
> additional computational costs per layer – often with complexity  O(n^2)

> Distributed Systems: 
> interprocess & network communication (with serialization and en/decrypting overhead)
> RPC and microservice architectures add unpredictable latency
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My First Story: The Complexity Trap

Project: PHP-based worktime tracking and work shift management system of a government agency with >10.000 users.

> Starting point: 1 Server  → Fast App with < 1s response time
> After 8 years:   24+ Servers → Slow App with > 10s response time

First examination results:

Issue #1:    SQL Query with 12.000 lines!
Issue #2:    PHP-Monolith with code inside MySQL DB
Issue #3:    Each session reads all user data on each request of the UI
Issue #4:    Nobody ever checked for slow queries and architecture flaws

Key problem: 

Architecture with no segregation of responsibilities and no support for (real) concurrent workloads.
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My Second Story: The Cloud Shock

Project: Java-based self-written ERP-System with >5.000 users migrated from on-premises VMs to cloud with „shift-left“ approach. 

> Starting point: 5-10 Server on-premises  → budget of 250.000 EUR/year and 4 admins
> After migration:   all VMs cloud hosted      → bill of 1.2 Mio EUR/year for cloud + some on-premises servers + 4 admins

First examination results:

Issue #1: High RAM Usage of Java-App, memory leaks of Tomcat
Issue #2:   High idle CPU load
Issue #3:    Default Tomcat-Config & Spring (Boot) Setup
Issue #4:    Full-blown Linux server OS inside VM

Key problem: 

Lift-and-shift workloads often miss 72% potential CO2 reduction (and accordingly the targeted cost reduction).
→ see: 451 Research for AWS, "The carbon reduction opportunity of moving to AWS," 2021
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The Deeper Cost: 
The Green IT Connection

Pay-per-use means pay-per-waste.

Cloud: You pay for what you use 

→ vCPU+vRAM+Storage+DB+Traffic accounted per minute

→ every component in cloud environments MUST be resource-efficient 

→ software must be designed to prevent CPU load during idle state and 
inefficient code

8 Title of the presentation 06/11/2025



1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm 1,2 cm

Global Reality Check: 
Datacenter Footprint

Key statistics

> 2022 Consumption: 460–550 TWh (nearly France's 
electricity demand)

> Ireland: Datacenters use 18% of national grid (2023)
> Projection: Global load could double by 2026 without 

efficiency gains.

The macro backdrop for Wirth's Law: 
Our software choices show up in national energy statistics.
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Measuring Sustainability: 
PUE, SCI & Workload Efficiency

Key metrics

> PUE (Power Usage Effectiveness): Hyperscaler ~1.1 vs. on-premises ~1.6
> SCI (Software Carbon Intensity):   SCI=(E*I)/R (kg CO2 per user action)
> Workload Efficiency: CPU utilization, autoscaling adherence, idle hours

Effects of workload tuning 
Studies by McKinsey and Uptime Institute in 2023 show software-driven 
workload tuning delivers 10–30% energy and cost reductions, even in 
efficient facilities.
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Strategy 1: Analyze & Optimize

You cannot optimize what you do not measure.

> PUE (Power Usage Effectiveness): Hyperscaler ~1.1 vs. on-premises ~1.6
> SCI (Software Carbon Intensity):   SCI=(E*I)/R (kg CO2 per user action)
> Workload Efficiency: CPU utilization, autoscaling adherence, idle hours

The Quick Win: Configuration is Code
> Tomcat Configuration

> Before: Default Config → increasing RAM-usage = high costs
> After: garbage collector & stack sizes optimized → costs reduced by 

over 60%, cpu-hours by almost 50%.
> SPRING framework

> Before: full blown config with default settings
> After: switched to Spring Boot with customized profile → reduced 

RAM-footprint by 25-30%, faster startup-times, lower memory costs
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Strategy 2: Architect for Simplicity

The Architectural Fix: Modularization & CQRS for PHP app

Key Architectural Changes:
> Modularization: 

Breaking the monolith into smaller, independent modules.
> CQRS: 

Separating 'write' operations from 'read' operations for independent 
optimization.

> MVC & Template framework:
Separating code for generating UI and business logic.

Result:
> From 24+ Servers -> 1 VM
> From Seconds -> Milliseconds (page load times)
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Strategy 3: Modernize Platforms

Leveraging Modern Technologies

Key Infrastructure Changes:
> Containerisation: 

Deploy the Java ERP as Containers in Kubernetes, instead of VMs
> Kubernetes & Stages:

New Stages for Development, Testing and Production with same 
cluster config and auto-scaling

> Managed Services:
Replace self hosted DB-, Web- and Storage-Servers by managed 
cloud-services like PostgreSQL-as-a-Service and S3

Result:
> Increased availability and service stability
> Price drop by 10-30% thanks to more efficient ressource management

and cheaper managed services
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Summary: Your Key Takeaways

Key Lesssons
Wirth's Law is more relevant than ever.
In the cloud, pay-per-use means pay-per-waste.
We must measure, not guess.
Configuration is code.
More hardware is a band-aid, good architecture is the cure.
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A Challenge For You
Three Questions for Your Projects
Do we measure?
Is our architecture helping us, or hurting us?
Are we efficient with our organisation's money and our 
planet‘s resources?
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Thank You

Time for your questions
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