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Motivation
Software Performance Engineering Dilemma:

Architectural performance modeling is helpful to obtain early
insights into system performance.

The Palladio Component Model (PCM) [Reussner et al. 2016]
is a suitable option for that. But the PCM must be enriched with
realistic resource demands.

Resource demands are often derived from systematic meas-
urements. But in the early design phase, there is no system to
measure yet.

Options to define resource demands during the early
design phase:
– Expert modeling (manual, requires expertise)
– Build prototype (late feedback, design changes)
– Skip analysis (risky)
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Introduction
Challenge: Early Design Software Performance Analysis

Requires measurements or expert knowledge to calibrate PCM
Time-consuming
Manual effort scales poorly with system complexity

Research Gap
Early design phase need fast, automated and reliable estimates
Current approaches rely on measurements or manual expert estimates
Missing: Systematic way for performance model generation in early design

Our Approach:

Leverage Large Language Models (LLMs) to generate parametric performance models

Input: Textual artefact (Code, documenation etc.) & target resource (CPU,Memory, Network)

Output: Interpretable, parametric performance models

3 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Example: Parametric Performance Model

Scenario: A microservice providing different API endpoints.

Goal: CPU utilization for one endpoint as a function of workload parameters

Parametrized Performance Model

Avg. CPU Util. % = 𝛼0 · request_rate + 𝛼1 · payload_size + 𝛼2

Parameters: Request rate, payload size, coefficients (𝛼i )

Output: CPU utilization prediction
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Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming
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Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming

Model-based Approaches

Model-driven techniques aim to provide earlier in-sights
based on Architecture [Pinciroli, Aleti and Trubiani 2023]

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration
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Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming

Model-based Approaches

Model-driven techniques aim to provide earlier in-sights
based on Architecture [Pinciroli, Aleti and Trubiani 2023]

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

LLM-based Approaches

Use LLMs for performance modeling [Nguyen-Nhat et al.
2024; Zhang, Hassan and Drechsler 2025; Hu et al. 2024]

Process textual artefacts to derive raw numerical predic-
tions for e.g execution time

No parameterization, not applicable for architecture per-
formance modeling (e.g with PCM)
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Methodology Overview

Objective:
Generate parametrized performance models using an LLM
workflow and a performance questionnaire

Inputs

Target Resource: CPU, Memory, Network

Textual Artefact (Optional): Code, Documentation etc.

Outputs

LLM generated parametric performance model

Symbol table with definitions

Documented assumptions
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Two-Step LLM Workflow - Step 1

Step 1: Prefill

LLM analyzes textual artifact

Extracts known performance information

Pre-populates performance questionnaire containing
questions regarding:
– Microservice business logic
– Deployment
– Workload characteristic
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Two-Step LLM Workflow - Step 2

Step 2: Completion & Synthesis

User answers the unanswered questions from step 1

LLM generates performance model based on filled per-
formance questionnaire and target resource

LLM acts as "performance engineer"
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Prompting Strategy

A role-based few-shot prompting approach

Dedicated prompt templates for Prefill and Synthesis
– Prefill: Supplied with an artefact and unanswered questions to elicit candidate answers for those questions based on the

artefact
– Synthesis: Assigns the LLM the role of an experienced performance engineer and uses the completed questionnaire to

generate a performance model along with a symbol table, assumptions, and rationale

Structured output format (JSON/YAML) with few-shot examples

Clear role definition: "You are an expert performance engineer..."
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Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al. 2019]
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Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al. 2019]

Hardware Configuration

Intel Core Ultra 7 165H

32 GB RAM

Windows 11

Isolated measurement environment

Workload Characteristics

OPC UA signals: 100–10,000

CPU utilization measured

Multiple measurement runs

Statistical validation

13 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Comparison & Evaluation Criteria
Baseline

Measured CPU utilization from actual system running the OPC UA Server

Artefact Input Variants (3 Artefact Types)

None: Manual answering questionaire without providing an artefact

Documentation: Use documentation as artefact

Code: Use source code as artefact

Evaluation Criteria

Trend consistency: Does LLM-generated performance models follow actual behavior?

Accuracy: How close to measurements?

Artefact influence: Impact of different input types
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Results Overview
Key Finding:

All generated performance models reproduce increasing CPU load trend, but accuracy varies

Nine models generated (three per arte-
fact type)

Note: Only two red lines visible (two
models identical)

Manual (None)

Underestimates max values

Code-based

Best approximation, correct slope

Docu-based

Similar quality, slightly less precise15 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Conclusion & Future Work

Current Limitations

Single microservice case study

One hardware configuration

CPU-focused metrics only

Limited workload scenarios

Future Research

Multiple services & platforms

Memory, network, I/O metrics

Hybrid LLM + measurement (MCP)

Integration with Palladio
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Questions & Discussion

Thank You!

Contact

Maximilian Hummel

Maximilian.Hummel@kit.edu

Code & Evaluation Results

Available at: https://doi.org/10.5281/zenodo.17310391

SSP 2025 – Kiel, Germany
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