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Motivation
Software Performance Engineering Dilemma:

= Architectural performance modeling is helpful to obtain early
insights into system performance.

= The Palladio Component Model (PCM) [Reussner et al. 2016]
is a suitable option for that. But the PCM must be enriched with
realistic resource demands.

= Resource demands are often derived from systematic meas-
urements. But in the early design phase, there is no system to
measure yet.

= Options to define resource demands during the early
design phase:
— Expert modeling (manual, requires expertise)
— Build prototype (late feedback, design changes)
— Skip analysis (risky)
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Introduction

Challenge: Early Design Software Performance Analysis
Requires measurements or expert knowledge to calibrate PCM

Time-consuming
Manual effort scales poorly with system complexity

Our Approach:

= Leverage Large Language Models (LLMs) to generate parametric performance models
= Input: Textual artefact (Code, documenation etc.) & target resource (CPU,Memory, Network)
= Output: Interpretable, parametric performance models
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Example: Parametric Performance Model

Scenario: A microservice providing different API endpoints.

Goal: CPU utilization for one endpoint as a function of workload parameters

= Parameters: Request rate, payload size, coefficients (o)
= Qutput: CPU utilization prediction
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Related Work

Measurement-based Approaches

Use a running system to create performance models

[Spinner et al. ; Jindal, Podolskiy and Gerndt ]

High accuracy

Expensive and time-consuming
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Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. ; Jindal, Podolskiy and Gerndt ]

High accuracy

Expensive and time-consuming
Model-based Approaches
Model-driven techniques aim to provide earlier in-sights

based on Architecture [Pinciroli, Aleti and Trubiani |

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

LLM-based Approaches

Use LLMs for performance modeling [Nguyen-Nhat et al.
; Zhang, Hassan and Drechsler ;Huetal. ]

Process textual artefacts to derive raw numerical predic-
tions for e.g execution time

No parameterization, not applicable for architecture per-
formance modeling (e.g with PCM)
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Methodology Overview

Objective:
Generate parametrized performance models using an LLM
workflow and a performance questionnaire i
AN - N Shar‘e’dfgtate
|nputs User ‘ UL (?reﬂll) | ‘ — (Sy‘nthesls) (artefact, questiopnaire, resource)
lllnputs 'l

Target Resource: CPU, Memory, Network
Textual Artefact (Optional): Code, Documentation etc. rextual artefact (Optional)

| Target resource (CPU, Memory, Network)

"LLM Workflow L
1 LLM Workflow I

e |
—

|_ Performance model + symbol table |

Outputs

= LLM generated parametric performance model
= Symbol table with definitions

= Documented assumptions
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Two-Step LLM Workflow - Step 1

Step 1: Prefill ﬁ% [LLM(P f_")] ‘LLM rep— Shared State
Usler . [l y‘n CEh (artefact, questinpnaire, resource)

. [ 1
= LLM analyzes textual artifact ; ; —Linputs | ;
! Target respurce (CPU, Memory, Network) !

. . - :Textual artlefact(Dpt‘lonal) i i
= Pre-populates performance questionnaire containing I i | \

= Extracts known performance information

questions regarding: - { Step 1: Prefill :
— Microservice business logic o TArtefact provided]
pt

Artefact + unanswered questionaire

— Deployment
— Workload characteristic

| Proposed answers (unknown = null)
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Two-Step LLM Workflow - Step 2

Step 2: Completion & hesis % . faj“
ared State
User ‘ L) (il ‘ — (Synthasm) (artefact, questinpnaire, resogurce)

] | ! ! — |
= User answers the unanswered questions from step 1 . . —LInputs
Eenreenl
IEtep 1: Prefill i

= LLM generates performance model based on filled per- :
formance questionnaire and target resource !

';' Step 2: cOmpIetlon & Synthesis |‘:

loop [Fhr each unanswarcll ‘question]

= LLM acts as "performance engineer"
! Ask question !

Answer question !

ISl
IOutputs f

Answered questionnaire
+ target resource

Performance model
+ symbul tab\e

<
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Prompting Strategy

A role-based few-shot prompting approach

= Dedicated prompt templates for Prefill and Synthesis
— Prefill: Supplied with an artefact and unanswered questions to elicit candidate answers for those questions based on the

artefact
— Synthesis: Assigns the LLM the role of an experienced performance engineer and uses the completed questionnaire to

generate a performance model along with a symbol table, assumptions, and rationale
= Structured output format (JSON/YAML) with few-shot examples
= Clear role definition: "You are an expert performance engineer..."
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Evaluation Setup

Field devices
Server

FD_1 —TCP/IP—

Use Case: OPC UA Server \
Client
Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments. it B OPCuAServer _TCP/IP_+

Client-Server architecture /

Performance-critical application domain [Burger et al. FO_n
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Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al.

Field devices

FD_1 —TCP/IP—

N\

/

FD_n

Server

FD_2 % | OPC UA Server I——TCP/IP—

Client

_>

Hardware Configuration ‘

‘ Workload Characteristics

= Intel Core Ultra 7 165H
= 32 GB RAM
= Windows 11

= |solated measurement environment

= OPC UA signals: 1001

0,000

= CPU utilization measured

= Multiple measurement runs

= Statistical validation
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Comparison & Evaluation Criteria

Baseline

Measured CPU utilization from actual system running the OPC UA Server

Artefact Input Variants (3 Artefact Types)

None: Manual answering questionaire without providing an artefact
Documentation: Use documentation as artefact

Code: Use source code as artefact

Evaluation Criteria

= Trend consistency: Does LLM-generated performance models follow actual behavior?
= Accuracy: How close to measurements?
= Artefact influence: Impact of different input types
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Results Overview

Key Finding:

All generated performance models reproduce increasing CPU load trend, but accuracy varies

Gpt-5 generated OPC UA performance models vs. Measurements (Baseline) = Nine models generated (three per arte-
(1 Client, 500ms update/read cycle) fact t e)
=@= Baseline (mean) yp
100 ] Aot ome = Note: Only two red lines visible (two
—~— Artefact: code - models identical)
Artefact: docu

@
3

Manual (None)

o
3

Underestimates max values

CPU Core Utilization (%)
2
S

Code-based

Best approximation, correct slope

Docu-based

0 2000 4000 6000 8000 10000
Number of Signals

Similar quality, slightly less precise  |T



Conclusion & Future Work

Current Limitations Future Research

Single microservice case study = Multiple services & platforms
One hardware configuration = Memory, network, I/O metrics
CPU-focused metrics only = Hybrid LLM + measurement (MCP)

Limited workload scenarios = Integration with Palladio
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Questions & Discussion

Thank You!

Code & Evaluation Results

Available at: https://doi.org/10.5281/zenodo.17310391
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