LLM-Assisted
Microservice
Performance
Modeling

Automated Generation of Parametric
Performance Models

;_

s BB —
Maximilian Hummel, Nathan Hagel, Minakshi Kaushik, Jan Keim, Erik E | a
Burger, Heiko Koziolek

Karlsruhe Institute of Technology (KIT) a
ABB Corporate Research Center

SSP 2025 — November 4-5, 2025 — Kiel, Germany

o

Motivation
Software Performance Engineering Dilemma:

= Architectural performance modeling is helpful to obtain early
insights into system performance.

= The Palladio Component Model (PCM) [Reussner et al. 2016]
is a suitable option for that. But the PCM must be enriched with
realistic resource demands.

= Resource demands are often derived from systematic meas-
urements. But in the early design phase, there is no system to
measure yet.

= Options to define resource demands during the early
design phase:
— Expert modeling (manual, requires expertise)
— Build prototype (late feedback, design changes)
— Skip analysis (risky)

InternalAction

CPU: 23

StopAction

AT

Introduction

Challenge: Early Design Software Performance Analysis
Requires measurements or expert knowledge to calibrate PCM

Time-consuming
Manual effort scales poorly with system complexity

Our Approach:

= Leverage Large Language Models (LLMs) to generate parametric performance models
= Input: Textual artefact (Code, documenation etc.) & target resource (CPU,Memory, Network)
= Output: Interpretable, parametric performance models

IT

Example: Parametric Performance Model

Scenario: A microservice providing different API endpoints.

Goal: CPU utilization for one endpoint as a function of workload parameters

= Parameters: Request rate, payload size, coefficients (o)
= Qutput: CPU utilization prediction

4 SSP 2025 Hummel et al. — LLM-Assisted Perf. Modeling g(IT

Related Work

Measurement-based Approaches

Use a running system to create performance models

[Spinner et al. ; Jindal, Podolskiy and Gerndt]

High accuracy

Expensive and time-consuming

IT

Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. ; Jindal, Podolskiy and Gerndt]

High accuracy

Expensive and time-consuming

Model-based Approaches

Model-driven techniques aim to provide earlier in-sights
based on Architecture [Pinciroli, Aleti and Trubiani |

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

IT

Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. ; Jindal, Podolskiy and Gerndt]

High accuracy

Expensive and time-consuming
Model-based Approaches
Model-driven techniques aim to provide earlier in-sights

based on Architecture [Pinciroli, Aleti and Trubiani |

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

LLM-based Approaches

Use LLMs for performance modeling [Nguyen-Nhat et al.
; Zhang, Hassan and Drechsler ;Huetal.]

Process textual artefacts to derive raw numerical predic-
tions for e.g execution time

No parameterization, not applicable for architecture per-
formance modeling (e.g with PCM)

AIT

Methodology Overview

Objective:
Generate parametrized performance models using an LLM
workflow and a performance questionnaire i
AN - N Shar‘e’dfgtate
|nputs User ‘ UL (?reﬂll) | ‘ — (Sy‘nthesls) (artefact, questiopnaire, resource)
lllnputs 'l

Target Resource: CPU, Memory, Network
Textual Artefact (Optional): Code, Documentation etc. rextual artefact (Optional)

| Target resource (CPU, Memory, Network)

"LLM Workflow L
1 LLM Workflow I

e |
—

|_ Performance model + symbol table |

Outputs

= LLM generated parametric performance model
= Symbol table with definitions

= Documented assumptions

AIT

Two-Step LLM Workflow - Step 1

Step 1: Prefill ﬁ% [LLM(P f_")] ‘LLM rep— Shared State
Usler . [l y‘n CEh (artefact, questinpnaire, resource)

. [1
= LLM analyzes textual artifact ; ; —Linputs | ;
! Target respurce (CPU, Memory, Network) !

. . - :Textual artlefact(Dpt‘lonal) i i
= Pre-populates performance questionnaire containing I i | \

= Extracts known performance information

questions regarding: - { Step 1: Prefill :
— Microservice business logic o TArtefact provided]
pt

Artefact + unanswered questionaire

— Deployment
— Workload characteristic

| Proposed answers (unknown = null)

AT

Two-Step LLM Workflow - Step 2

Step 2: Completion & hesis % . faj“
ared State
User ‘ L) (il ‘ — (Synthasm) (artefact, questinpnaire, resogurce)

] | ! ! — |
= User answers the unanswered questions from step 1 . . —LInputs
Eenreenl
IEtep 1: Prefill i

= LLM generates performance model based on filled per- :
formance questionnaire and target resource !

';' Step 2: cOmpIetlon & Synthesis |‘:

loop [Fhr each unanswarcll ‘question]

= LLM acts as "performance engineer"
! Ask question !

Answer question !

ISl
IOutputs f

Answered questionnaire
+ target resource

Performance model
+ symbul tab\e

<

AIT

Prompting Strategy

A role-based few-shot prompting approach

= Dedicated prompt templates for Prefill and Synthesis
— Prefill: Supplied with an artefact and unanswered questions to elicit candidate answers for those questions based on the

artefact
— Synthesis: Assigns the LLM the role of an experienced performance engineer and uses the completed questionnaire to

generate a performance model along with a symbol table, assumptions, and rationale
= Structured output format (JSON/YAML) with few-shot examples
= Clear role definition: "You are an expert performance engineer..."

IT

Evaluation Setup

Field devices
Server

FD_1 —TCP/IP—

Use Case: OPC UA Server \
Client
Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments. it B OPCuAServer _TCP/IP_+

Client-Server architecture /

Performance-critical application domain [Burger et al. FO_n

AIT

Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al.

Field devices

FD_1 —TCP/IP—

N\

/

FD_n

Server

FD_2 % | OPC UA Server I——TCP/IP—

Client

_>

Hardware Configuration ‘

‘ Workload Characteristics

= Intel Core Ultra 7 165H
= 32 GB RAM
= Windows 11

= |solated measurement environment

= OPC UA signals: 1001

0,000

= CPU utilization measured

= Multiple measurement runs

= Statistical validation

AIT

Comparison & Evaluation Criteria

Baseline

Measured CPU utilization from actual system running the OPC UA Server

Artefact Input Variants (3 Artefact Types)

None: Manual answering questionaire without providing an artefact
Documentation: Use documentation as artefact

Code: Use source code as artefact

Evaluation Criteria

= Trend consistency: Does LLM-generated performance models follow actual behavior?
= Accuracy: How close to measurements?
= Artefact influence: Impact of different input types

IT

Results Overview

Key Finding:

All generated performance models reproduce increasing CPU load trend, but accuracy varies

Gpt-5 generated OPC UA performance models vs. Measurements (Baseline) = Nine models generated (three per arte-
(1 Client, 500ms update/read cycle) fact t e)
=@= Baseline (mean) yp
100] Aot ome = Note: Only two red lines visible (two
—~— Artefact: code - models identical)
Artefact: docu

@
3

Manual (None)

o
3

Underestimates max values

CPU Core Utilization (%)
2
S

Code-based

Best approximation, correct slope

Docu-based

0 2000 4000 6000 8000 10000
Number of Signals

Similar quality, slightly less precise |T

Conclusion & Future Work

Current Limitations Future Research

Single microservice case study = Multiple services & platforms
One hardware configuration = Memory, network, I/O metrics
CPU-focused metrics only = Hybrid LLM + measurement (MCP)

Limited workload scenarios = Integration with Palladio

AIT

Questions & Discussion

Thank You!

Code & Evaluation Results

Available at: https://doi.org/10.5281/zenodo.17310391

17 SSP 2025 Hummel et al. — LLM-Assisted Perf. Modeling g(IT

DO & W D W

Burger, Andreas et al. (2019). ‘Bottleneck Identification and Performance Modeling of OPC UA Communication Models’. In: Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering. ICPE '19. Mumbai, India: Association for Computing Machinery,
pp. 231-242. 1SBN: 9781450362399. DOI: 10.1145/3297663.3309670. URL: https://doi.org/10.1145/3297663.3309670.

Hu, Jiekang et al. (2024). ‘LLM4MDG: Leveraging Large Language Model to Construct Microservices Dependency Graph'. In: 2024 IEEE
23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 859-869. bol: 10.1109/
TrustCom63139.2024.00128.

Jindal, Anshul, Vladimir Podolskiy and Michael Gerndt (2019). ‘Performance Modeling for Cloud Microservice Applications’. In: Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering. ICPE '19. Mumbai, India: Association for Computing Machinery,
pp. 25-32. I1SBN: 9781450362399. DOI: 10.1145/3297663.3310309. URL: https://doi.org/10.1145/3297663.3310309.

Nguyen-Nhat, Minh-Khoi et al. (2024). ‘LLMPerf: GPU Performance Modeling meets Large Language Models’. In: 2024 32nd International
Conference on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1-8. boI: 10. 1109/
MASCOTS64422.2024.10786558.

Pinciroli, Riccardo, Aldeida Aleti and Catia Trubiani (2023). ‘Performance Modeling and Analysis of Design Patterns for Microservice Systems’.
In: 2023 IEEE 20th International Conference on Software Architecture (ICSA), pp. 35-46. DOI: 10.1109/ICSA56044.2023.00012.

Reussner, Ralf H et al. (2016). Modeling and simulating software architectures: The Palladio approach. MIT Press.
Spinner, Simon et al. (2015). ‘Evaluating approaches to resource demand estimation’. In: Performance Evaluation 92, pp. 51-71.

Zhang, Weiyan, Muhammad Hassan and Rolf Drechsler (2025). ‘LLM-assisted Performance Estimation of Embedded Software on RISC-V
Processors'’. In: 2025 IEEE 28th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 7-12.
DOI: 10.1109/DDECS63720.2025.11006767.

AT

https://doi.org/10.1145/3297663.3309670
https://doi.org/10.1145/3297663.3309670
https://doi.org/10.1109/TrustCom63139.2024.00128
https://doi.org/10.1109/TrustCom63139.2024.00128
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1109/MASCOTS64422.2024.10786558
https://doi.org/10.1109/MASCOTS64422.2024.10786558
https://doi.org/10.1109/ICSA56044.2023.00012
https://doi.org/10.1109/DDECS63720.2025.11006767

	Introduction
	Related Work
	Methodology
	Evaluation & Setup
	Results
	Conclusion & Future Work
	References

