
LLM-Assisted
Microservice
Performance
Modeling
Automated Generation of Parametric
Performance Models

Maximilian Hummel, Nathan Hagel, Minakshi Kaushik, Jan Keim, Erik
Burger, Heiko Koziolek
Karlsruhe Institute of Technology (KIT)
ABB Corporate Research Center
SSP 2025 – November 4–5, 2025 – Kiel, Germany



Motivation
Software Performance Engineering Dilemma:

Architectural performance modeling is helpful to obtain early
insights into system performance.

The Palladio Component Model (PCM) [Reussner et al. 2016]
is a suitable option for that. But the PCM must be enriched with
realistic resource demands.

Resource demands are often derived from systematic meas-
urements. But in the early design phase, there is no system to
measure yet.

Options to define resource demands during the early
design phase:
– Expert modeling (manual, requires expertise)
– Build prototype (late feedback, design changes)
– Skip analysis (risky)

2 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Introduction
Challenge: Early Design Software Performance Analysis

Requires measurements or expert knowledge to calibrate PCM
Time-consuming
Manual effort scales poorly with system complexity

Research Gap
Early design phase need fast, automated and reliable estimates
Current approaches rely on measurements or manual expert estimates
Missing: Systematic way for performance model generation in early design

Our Approach:

Leverage Large Language Models (LLMs) to generate parametric performance models

Input: Textual artefact (Code, documenation etc.) & target resource (CPU,Memory, Network)

Output: Interpretable, parametric performance models

3 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Example: Parametric Performance Model

Scenario: A microservice providing different API endpoints.

Goal: CPU utilization for one endpoint as a function of workload parameters

Parametrized Performance Model

Avg. CPU Util. % = 𝛼0 · request_rate + 𝛼1 · payload_size + 𝛼2

Parameters: Request rate, payload size, coefficients (𝛼i )

Output: CPU utilization prediction

4 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming

5 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming

Model-based Approaches

Model-driven techniques aim to provide earlier in-sights
based on Architecture [Pinciroli, Aleti and Trubiani 2023]

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

6 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Related Work

Measurement-based Approaches

Use a running system to create performance models
[Spinner et al. 2015; Jindal, Podolskiy and Gerndt 2019]

High accuracy

Expensive and time-consuming

Model-based Approaches

Model-driven techniques aim to provide earlier in-sights
based on Architecture [Pinciroli, Aleti and Trubiani 2023]

Early-stage applicable

Need a running system or expert knowledge at some
point for calibration

LLM-based Approaches

Use LLMs for performance modeling [Nguyen-Nhat et al.
2024; Zhang, Hassan and Drechsler 2025; Hu et al. 2024]

Process textual artefacts to derive raw numerical predic-
tions for e.g execution time

No parameterization, not applicable for architecture per-
formance modeling (e.g with PCM)

7 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Methodology Overview

Objective:
Generate parametrized performance models using an LLM
workflow and a performance questionnaire

Inputs

Target Resource: CPU, Memory, Network

Textual Artefact (Optional): Code, Documentation etc.

Outputs

LLM generated parametric performance model

Symbol table with definitions

Documented assumptions

8 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Two-Step LLM Workflow - Step 1

Step 1: Prefill

LLM analyzes textual artifact

Extracts known performance information

Pre-populates performance questionnaire containing
questions regarding:
– Microservice business logic
– Deployment
– Workload characteristic

9 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Two-Step LLM Workflow - Step 2

Step 2: Completion & Synthesis

User answers the unanswered questions from step 1

LLM generates performance model based on filled per-
formance questionnaire and target resource

LLM acts as "performance engineer"

10 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Prompting Strategy

A role-based few-shot prompting approach

Dedicated prompt templates for Prefill and Synthesis
– Prefill: Supplied with an artefact and unanswered questions to elicit candidate answers for those questions based on the

artefact
– Synthesis: Assigns the LLM the role of an experienced performance engineer and uses the completed questionnaire to

generate a performance model along with a symbol table, assumptions, and rationale

Structured output format (JSON/YAML) with few-shot examples

Clear role definition: "You are an expert performance engineer..."

11 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al. 2019]

12 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Evaluation Setup

Use Case: OPC UA Server

Industry-standard protocol for data exchange between field
devices (FDs) and clients in automation environments.

Client-Server architecture

Performance-critical application domain [Burger et al. 2019]

Hardware Configuration

Intel Core Ultra 7 165H

32 GB RAM

Windows 11

Isolated measurement environment

Workload Characteristics

OPC UA signals: 100–10,000

CPU utilization measured

Multiple measurement runs

Statistical validation

13 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Comparison & Evaluation Criteria
Baseline

Measured CPU utilization from actual system running the OPC UA Server

Artefact Input Variants (3 Artefact Types)

None: Manual answering questionaire without providing an artefact

Documentation: Use documentation as artefact

Code: Use source code as artefact

Evaluation Criteria

Trend consistency: Does LLM-generated performance models follow actual behavior?

Accuracy: How close to measurements?

Artefact influence: Impact of different input types

14 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Results Overview
Key Finding:

All generated performance models reproduce increasing CPU load trend, but accuracy varies

Nine models generated (three per arte-
fact type)

Note: Only two red lines visible (two
models identical)

Manual (None)

Underestimates max values

Code-based

Best approximation, correct slope

Docu-based

Similar quality, slightly less precise15 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Conclusion & Future Work

Current Limitations

Single microservice case study

One hardware configuration

CPU-focused metrics only

Limited workload scenarios

Future Research

Multiple services & platforms

Memory, network, I/O metrics

Hybrid LLM + measurement (MCP)

Integration with Palladio

16 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Questions & Discussion

Thank You!

Contact

Maximilian Hummel

Maximilian.Hummel@kit.edu

Code & Evaluation Results

Available at: https://doi.org/10.5281/zenodo.17310391

SSP 2025 – Kiel, Germany

17 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling



Burger, Andreas et al. (2019). ‘Bottleneck Identification and Performance Modeling of OPC UA Communication Models’. In: Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering. ICPE ’19. Mumbai, India: Association for Computing Machinery,
pp. 231–242. ISBN: 9781450362399. DOI: 10.1145/3297663.3309670. URL: https://doi.org/10.1145/3297663.3309670.

Hu, Jiekang et al. (2024). ‘LLM4MDG: Leveraging Large Language Model to Construct Microservices Dependency Graph’. In: 2024 IEEE
23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 859–869. DOI: 10 .1109 /
TrustCom63139.2024.00128.

Jindal, Anshul, Vladimir Podolskiy and Michael Gerndt (2019). ‘Performance Modeling for Cloud Microservice Applications’. In: Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering. ICPE ’19. Mumbai, India: Association for Computing Machinery,
pp. 25–32. ISBN: 9781450362399. DOI: 10.1145/3297663.3310309. URL: https://doi.org/10.1145/3297663.3310309.

Nguyen-Nhat, Minh-Khoi et al. (2024). ‘LLMPerf: GPU Performance Modeling meets Large Language Models’. In: 2024 32nd International
Conference on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 1–8. DOI: 10 . 1109 /
MASCOTS64422.2024.10786558.

Pinciroli, Riccardo, Aldeida Aleti and Catia Trubiani (2023). ‘Performance Modeling and Analysis of Design Patterns for Microservice Systems’.
In: 2023 IEEE 20th International Conference on Software Architecture (ICSA), pp. 35–46. DOI: 10.1109/ICSA56044.2023.00012.

Reussner, Ralf H et al. (2016). Modeling and simulating software architectures: The Palladio approach. MIT Press.

Spinner, Simon et al. (2015). ‘Evaluating approaches to resource demand estimation’. In: Performance Evaluation 92, pp. 51–71.

Zhang, Weiyan, Muhammad Hassan and Rolf Drechsler (2025). ‘LLM-assisted Performance Estimation of Embedded Software on RISC-V
Processors’. In: 2025 IEEE 28th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pp. 7–12.
DOI: 10.1109/DDECS63720.2025.11006767.

18 SSP 2025 Hummel et al. – LLM-Assisted Perf. Modeling

https://doi.org/10.1145/3297663.3309670
https://doi.org/10.1145/3297663.3309670
https://doi.org/10.1109/TrustCom63139.2024.00128
https://doi.org/10.1109/TrustCom63139.2024.00128
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1145/3297663.3310309
https://doi.org/10.1109/MASCOTS64422.2024.10786558
https://doi.org/10.1109/MASCOTS64422.2024.10786558
https://doi.org/10.1109/ICSA56044.2023.00012
https://doi.org/10.1109/DDECS63720.2025.11006767

	Introduction
	Related Work
	Methodology
	Evaluation & Setup
	Results
	Conclusion & Future Work
	References

