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Tradeoff between Simulation Runtime and Accuracy

m Start with machine learning as a surrogate for Palladio
m Future work will evaluate larger models as alternative for more detailed simulators
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Background

Palladio

m Architecture performance modeling framework

m Supports coarse grained modeling already at design
time

m Predicts metrics like response time and CPU usage

m Treated as a black box to generate the training data

Background
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Background

Palladio Palladio Component Model (PCM)

m Architecture performance modeling framework m Repository, Assembly, Resource Environment,
m Supports coarse grained modeling already at design Deployment, Usage
time m Instances based on PCM-Metamodel
m Predicts metrics like response time and CPU usage m Text-based PCM specifies the elements according to a
m Treated as a black box to generate the training data DSL similar to the PCM-Metamodel
Background
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Background

Palladio Palladio Component Model (PCM)

m Architecture performance modeling framework = Repository, Assembly, Resource Environment,
m Supports coarse grained modeling already at design Deployment, Usage
dlme m Instances based on PCM-Metamodel
m Predicts metrics like response time and CPU usage g Text-based PCM specifies the elements according to a
m Treated as a black box to generate the training data DSL similar to the PCM-Metamodel
PCM 1o Measurements
Architecture —— B 51 8 (Response Time,
Models g CPU Utilization)
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Text-based Palladio Component Model (TPCM)

system minimalSystem {
import std::definitions provides sMinimal minimalRepo::IMinimalService ->
assembly Al minimalRepo::MinimalComponent
repository minimalRepo { }
datatype PrimitiveInt INT
resourceenvironment minimalEnv {

interface IMinimalService { container C1 {
op doSomething(param PrimitiveInt) processing CPU CPUResource
} }
}
component MinimalComponent {
provides pMinimal IMinimalService allocation minimalAllocation {
requires cpu ICPU minimalSystem::Al -> minimalEnv::C1l
}
seff pMinimal.doSomething {
cpu.process(<param.VALUE>) usage minimalUsage {
} "Minimal Scenario" population(<l>) thinkTime(<0.1>) {
} minimalSystem: :sMinimal.doSomething (<42>)
} }
}
Background
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Machine Learning

Embeddings

m Convert text into numerical vectors that capture

meaning
m Term Frequency-Inverse Document Frequency
(TF-IDF)
m Algorithm to calculate embeddings
m Counts word frequency in and across documents and gives
them according vectors
m Bidirectional encoder representations from
transformers (BERT)
m Large Language Model for the generation of embeddings
m Learns context-sensitive, deep semantic representations

Background
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Machine Learning

Embeddings

m Convert text into numerical vectors that capture

Machine Learning (ML)

meaning m Model Types
m Term Frequency-Inverse Document Frequency = Random Forest
(TF-IDF) m Support Vector Machine
m Algorithm to calculate embeddings m Artificial Neural Network
m Counts word frequency in and across documents and gives m Linear Models
~_them according vectors . m Hyperparameters are parameters configuring the
m Bidirectional encoder representations from training process and ML model properties, but not the

transformers (BERT)

m Large Language Model for the generation of embeddings
m Learns context-sensitive, deep semantic representations

weights
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Related Work

Highly Configurable Systems

m Deep (Ha and Zhang 2019) and adversarial (Shu et al. 2020) learning to improve accuracy with limited data
m Prediction of execution time and scalability

High Performance Computing

m Benchmark comparing eleven machine learning methods for modeling the performance of four representative
scientific applications on four HPC platforms (Malakar et al. 2018)

m Comparing shallow and deep neural networks for three algorithms with different computations and memory-access
patterns (Mankodi, Bhatt, and Chaudhury 2020)

Code-level predictors

m DeepTLE (Zhou et al. 2019) uses deep learning on tokenized code sequences to predict performance without
executing code

Background
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Approach — Overview

Model Generation
(TPCM, PCM)

Simulation Dataset Embeddings ML Training Prediction
(Palladio) | | (TPCM, Latency)| |(TF-IDF, BERT)| | (RF, SVM, NN) | | (MAE, RMSE, R?)

Surrogate Model Training Pipeline

m Generate architecture models in the TPCM-format

m Transform them to the PCM-format and simulate them

m Aggregate the TPCM models and simulation results for the training dataset
m Calculate the embeddings for the dataset

m Train the different ML model

Approach
@0000000
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Approach — Model Generation

Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Model Generator

m Generate random number of model elements in given bounds

m Randomly connecting the model elements to suitable other model elements, e.g., a component to an interface
m Model elements were generated first from the repository, then assembly, then deployment, then usage

m No further domain knowledge was used, e.g., generating the system model based on a random DAG

m TPCM-format was chosen as input format for the ML models due to its better human readable structure

m To be able to simulate the models they had to be converted to the PCM-format

Dataset Embeddings
(TPCM, Latency)| | (TF-IDF, BERT)

ML Training Prediction
(RF, SVM, NN) | | (MAE, RMSE, R?)

Approach
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Approach — Dataset

Model Generation
(TPCM, PCM)

Simulation Dataset Embeddings ML Training Prediction
(Palladio) | |(TPCM, Latency)| | (TF-IDF, BERT)| | (RF, SVM, NN) | | (MAE, RMSE, R?)

Metric Value
Dataset Number of samples 15,529
m Successfully simulated (T)PCM models with their Min 'T‘p“t length (characters) 3,231
average response time Max input length (characters) 20,457
. . Average input length (characters) 8,915.40
m Skewed distribution of response times Min avg_resp_time (s) 0.000000
m Some models were syntactically correct but could not Max avg_ resp_ time (s) 157782044
be simulated, therefore they were excluded Average_avg r_esp time (s) 0.479739
Approach
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9/15 4.11.2025 Thomas Weber: ML Surrogate Models for Performance Prediction FZI, KIT/DSIS Oii'. *‘(IT

FZI



Approach — Embeddings

(TPCM, Latency) TF-IDF, BERT)| | (RF, SVM, NN) | | (MAE, RMSE, R?)

Model Generation | | Simulation
(TPCM, PCM) (Palladio)

Embedding Calculation

m Calculated once
m TF-IDF as simple baseline, BERT for contextual embeddings
m 512 token limit of BERT solved by chunking input model with sliding window and averaging resulting vectors

Dataset }»\ Embeddings
(

ML Training H Prediction ]

Approach
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Approach — ML Training

(TPCM, PCM) (TPCM, Latency) | | (TF-IDF, BERT RF, SVM, NN)| | (MAE, RMSE, R?)

Model Generation}_

Simulation
(Palladio)

Dataset H Embeddings H ML Training { Prediction ]
)| ¢

Model Types Model Training

m Hyperparameters value ranges tuned manually
m All hyperparameters fixed except one

m Repeat training runs per configuration 3 times and
average results

m Compare each model to dummy predicting average

m Random Forest

m Support Vector Machine

m Artificial Neural Network

m Linear Models (Ridge and Lasso Regression)

Approach
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Evaluation

Goals

m Prediction quality compared to the Palladio results
m Prediction quality of the different model types
m Prediction quality of the two different embeddings

Approach
00000@00
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Evaluation
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BERT Embedding

n=96

n=36

Results BERT

m Models perform similarly
m SVM and ANN (torch) slightly ahead
m Mean absolute Error (MAE) worse than expected

& ¢ 2 &
Model Type Background Approach Conclusion
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Evaluation

TFIDF Embedding
n=165

25

2.0

Results TF-IDF

m Strong linear performance

w15
<
=
m Large svm outliers g
m Slightly better than BERT (different scalings of the |
MAE due to the outliers) ° Z
- P & 8 < &
Approach Model Type
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Evaluation

Results overall
= High Mean absolute Error given the small TPGM

m Prediction quality compared to the Palladio results models
m Prediction quality of the different model types m No clear best model type
m Prediction quality of the two different embeddings m TF-IDF embeddings performed slightly better than
BERT embeddings
Approach
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Evaluation

Threats to validity

m Data Generation Bias: Randomly generated TPCM models do not reflect realistic architectural designs, limiting
external validity and representativeness

m Simulation Failures and Filtering: Roughly 40% of generated models failed simulation or were excluded due to
invalid structure, potentially biasing the dataset toward simpler or semantically trivial configurations

m Limited Variability in Target Metrics: Many valid simulations yielded near-zero response times, restricting the
range of the dependent variable and weakening learning signals

m Computational Constraints: Lack of GPU resources and restricted hyperparameter searches may have limited the
optimization and tuning of ML models

m Metric Sensitivity: Differences between MAE and R? interpretations could distort conclusions, as R? penalizes
outliers more heavily in a noisy, low-signal dataset

Approach
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Evaluation

m Low Information Density in Models: The generated models were randomly connected, which resulted in
potentially huge parts of the models being irrelevant for the performance prediction

m Insufficient Data Volume and Quality: The dataset size and randomness restricted generalization and amplified
the noise—signal imbalance in model training

m Low Interpretability of Complex ML Models: One benefit of Palladio is the easy interpretation of the simulation
results, which the complex ML models do not have

m Overfitting and Instability: Ensemble and neural models showed high variance across runs, often fitting noise
rather than meaningful architectural patterns

m Limited Transferability: Models trained on synthetic TPCM data probably do not generalize to real-world
architectures or larger-scale systems

Approach
0000000e

14/15 4.11.2025 Thomas Weber: ML Surrogate Models for Performance Prediction FZI, KIT/DSIS l;;;'l &‘(IT



Conclusion

m End-to-end pipeline for ML-based performance
prediction from TPCM models

m Automatic generator for random TPCM models

m Explored TF-IDF and BERT embeddings with various
ML models

m Predictive accuracy remained low

Conclusion
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Conclusion

R

m Improve the random generation of TPCM models

- Enehierene piaelins oy il gesssl pelionreree = Use encoders capable of embedding TPCM models

prediction from TPCM models

ithout chunki
= Automatic generator for random TPGM models N \',I'Vrl rl; h—gas:(? representations of the TPCM models
= Explored TF-IDF and BERT embeddings with various y grep P

ML models m Integrate explallnable Al approaches to ensure the
correct conclusion can be drawn

. . - I
m Predictive accuracy remained low m Try few-shot or zero-shot prompting with LLMs

Conclusion

°
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Conclusion

R

m Improve the random generation of TPCM models

m Use encoders capable of embedding TPCM models
without chunking

m Try graph-based representations of the TPCM models

m Integrate explainable Al approaches to ensure the
correct conclusion can be drawn

m Try few-shot or zero-shot prompting with LLMs

m Sebastian Weber
B sebastian.weber@fzi.de

m End-to-end pipeline for ML-based performance
prediction from TPCM models

m Automatic generator for random TPCM models

m Explored TF-IDF and BERT embeddings with various
ML models

m Predictive accuracy remained low

Conclusion
°
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