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Palladio
Architecture performance modeling framework
Supports coarse grained modeling already at design
time
Predicts metrics like response time and CPU usage
Treated as a black box to generate the training data

Palladio Component Model (PCM)

Repository, Assembly, Resource Environment,
Deployment, Usage
Instances based on PCM-Metamodel
Text-based PCM specifies the elements according to a
DSL similar to the PCM-Metamodel
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import std::definitions

repository minimalRepo {
datatype PrimitiveInt INT

interface IMinimalService {
op doSomething(param PrimitiveInt)

}

component MinimalComponent {
provides pMinimal IMinimalService
requires cpu ICPU

seff pMinimal.doSomething {
cpu.process(<param.VALUE>)

}
}

}

system minimalSystem {
provides sMinimal minimalRepo::IMinimalService ->
assembly A1 minimalRepo::MinimalComponent

}

resourceenvironment minimalEnv {
container C1 {
processing CPU CPUResource

}
}

allocation minimalAllocation {
minimalSystem::A1 -> minimalEnv::C1

}

usage minimalUsage {
"Minimal Scenario" population(<1>) thinkTime(<0.1>) {
minimalSystem::sMinimal.doSomething (<42>)

}
}
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Text-based Palladio Component Model (TPCM)



Embeddings

Convert text into numerical vectors that capture
meaning
Term Frequency-Inverse Document Frequency
(TF-IDF)

Algorithm to calculate embeddings
Counts word frequency in and across documents and gives
them according vectors

Bidirectional encoder representations from
transformers (BERT)

Large Language Model for the generation of embeddings
Learns context-sensitive, deep semantic representations

Machine Learning (ML)
Model Types

Random Forest
Support Vector Machine
Artificial Neural Network
Linear Models

Hyperparameters are parameters configuring the
training process and ML model properties, but not the
weights

Motivation Background Approach Conclusion
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Highly Configurable Systems

Deep (Ha and Zhang 2019) and adversarial (Shu et al. 2020) learning to improve accuracy with limited data
Prediction of execution time and scalability

High Performance Computing

Benchmark comparing eleven machine learning methods for modeling the performance of four representative
scientific applications on four HPC platforms (Malakar et al. 2018)
Comparing shallow and deep neural networks for three algorithms with different computations and memory-access
patterns (Mankodi, Bhatt, and Chaudhury 2020)

Code-level predictors

DeepTLE (Zhou et al. 2019) uses deep learning on tokenized code sequences to predict performance without
executing code
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Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Dataset
(TPCM, Latency)

Embeddings
(TF-IDF, BERT)

ML Training
(RF, SVM, NN)

Prediction
(MAE , RMSE , R2)

Surrogate Model Training Pipeline

Generate architecture models in the TPCM-format
Transform them to the PCM-format and simulate them
Aggregate the TPCM models and simulation results for the training dataset
Calculate the embeddings for the dataset
Train the different ML model
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Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Dataset
(TPCM, Latency)

Embeddings
(TF-IDF, BERT)

ML Training
(RF, SVM, NN)

Prediction
(MAE , RMSE , R2)

Model Generator

Generate random number of model elements in given bounds
Randomly connecting the model elements to suitable other model elements, e.g., a component to an interface
Model elements were generated first from the repository, then assembly, then deployment, then usage
No further domain knowledge was used, e.g., generating the system model based on a random DAG
TPCM-format was chosen as input format for the ML models due to its better human readable structure
To be able to simulate the models they had to be converted to the PCM-format
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Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Dataset
(TPCM, Latency)

Embeddings
(TF-IDF, BERT)

ML Training
(RF, SVM, NN)

Prediction
(MAE , RMSE , R2)

Dataset
Successfully simulated (T)PCM models with their
average response time
Skewed distribution of response times
Some models were syntactically correct but could not
be simulated, therefore they were excluded

Metric Value
Number of samples 15,529
Min input length (characters) 3,231
Max input length (characters) 20,457
Average input length (characters) 8,915.40
Min avg_resp_time (s) 0.000000
Max avg_resp_time (s) 157.782044
Average avg_resp_time (s) 0.479739
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Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Dataset
(TPCM, Latency)

Embeddings
(TF-IDF, BERT)

ML Training
(RF, SVM, NN)

Prediction
(MAE , RMSE , R2)

Embedding Calculation

Calculated once
TF-IDF as simple baseline, BERT for contextual embeddings
512 token limit of BERT solved by chunking input model with sliding window and averaging resulting vectors
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Model Generation
(TPCM, PCM)

Simulation
(Palladio)

Dataset
(TPCM, Latency)

Embeddings
(TF-IDF, BERT)

ML Training
(RF, SVM, NN)

Prediction
(MAE , RMSE , R2)

Model Types

Random Forest
Support Vector Machine
Artificial Neural Network
Linear Models (Ridge and Lasso Regression)

Model Training

Hyperparameters value ranges tuned manually
All hyperparameters fixed except one
Repeat training runs per configuration 3 times and
average results
Compare each model to dummy predicting average
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Goals
Prediction quality compared to the Palladio results
Prediction quality of the different model types
Prediction quality of the two different embeddings

Motivation Background Approach Conclusion
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Results BERT
Models perform similarly
SVM and ANN (torch) slightly ahead
Mean absolute Error (MAE) worse than expected
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Evaluation



Results TF-IDF
Strong linear performance
Large svm outliers
Slightly better than BERT (different scalings of the
MAE due to the outliers)

Motivation Background Approach Conclusion
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Goals
Prediction quality compared to the Palladio results
Prediction quality of the different model types
Prediction quality of the two different embeddings

Results overall
High Mean absolute Error given the small TPCM
models
No clear best model type
TF-IDF embeddings performed slightly better than
BERT embeddings
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Threats to validity

Data Generation Bias: Randomly generated TPCM models do not reflect realistic architectural designs, limiting
external validity and representativeness
Simulation Failures and Filtering: Roughly 40% of generated models failed simulation or were excluded due to
invalid structure, potentially biasing the dataset toward simpler or semantically trivial configurations
Limited Variability in Target Metrics: Many valid simulations yielded near-zero response times, restricting the
range of the dependent variable and weakening learning signals
Computational Constraints: Lack of GPU resources and restricted hyperparameter searches may have limited the
optimization and tuning of ML models
Metric Sensitivity: Differences between MAE and R2 interpretations could distort conclusions, as R2 penalizes
outliers more heavily in a noisy, low-signal dataset

Motivation Background Approach Conclusion
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Evaluation



Limitations

Low Information Density in Models: The generated models were randomly connected, which resulted in
potentially huge parts of the models being irrelevant for the performance prediction
Insufficient Data Volume and Quality: The dataset size and randomness restricted generalization and amplified
the noise–signal imbalance in model training
Low Interpretability of Complex ML Models: One benefit of Palladio is the easy interpretation of the simulation
results, which the complex ML models do not have
Overfitting and Instability: Ensemble and neural models showed high variance across runs, often fitting noise
rather than meaningful architectural patterns
Limited Transferability: Models trained on synthetic TPCM data probably do not generalize to real-world
architectures or larger-scale systems

Motivation Background Approach Conclusion
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Results
End-to-end pipeline for ML-based performance
prediction from TPCM models
Automatic generator for random TPCM models
Explored TF-IDF and BERT embeddings with various
ML models
Predictive accuracy remained low

Future Work
Improve the random generation of TPCM models
Use encoders capable of embedding TPCM models
without chunking
Try graph-based representations of the TPCM models
Integrate explainable AI approaches to ensure the
correct conclusion can be drawn
Try few-shot or zero-shot prompting with LLMs

Contact

Sebastian Weber
sebastian.weber@fzi.de

Motivation Background Approach Conclusion
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