
*FZI Research Center for Information Technology
†Karlsruhe Institute of Technology
‡Ulm University

Generation of
Checkpoints for
Hardware
Architecture
Simulators

Sebastian Weber*, Lars Weber†, Thomas Weber†,
Jörg Henß*, Robert Heinrich‡

Thomas Weber† | 4th November 2025



Figure: Abstract view on multiple simuluations on different levels of
granularity.

Switching Levels

Car simulation on autumn street

Simulating on E/E-Architecture level
Change in surface, e.g., wet leaves, requires different
simulation
Not only on physical level
But also increased load on ECUs due to compensation
calculations

Motivation Background Approach Conclusion

2/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



Figure: Abstract view on multiple simuluations on different levels of
granularity.

Switching Levels

Car simulation on autumn street
Simulating on E/E-Architecture level
Change in surface, e.g., wet leaves, requires different
simulation

Not only on physical level
But also increased load on ECUs due to compensation
calculations

Motivation Background Approach Conclusion

2/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



Figure: Abstract view on multiple simuluations on different levels of
granularity.

Switching Levels

Car simulation on autumn street
Simulating on E/E-Architecture level
Change in surface, e.g., wet leaves, requires different
simulation
Not only on physical level
But also increased load on ECUs due to compensation
calculations

Motivation Background Approach Conclusion

2/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



High-Level Architectural
Simulation
(e.g., Palladio)

Mid-Level Functional
Simulation
(e.g., SystemC)

Low-Level Timing
Simulation

(e.g., gem5)

Switch level Switch level

Checkpoint
System State

Checkpoint
System State

Checkpoint

Internal state of a (modeled) system at a given point in time
Allows to start simulation at this point in time

Transformation to initial states of other simulations
Goal: use the most suitable level of abstraction at any point during the simulation
Initialization bias: initial states can have huge impact on simulation results

Motivation Background Approach Conclusion

3/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



High-Level Architectural
Simulation
(e.g., Palladio)

Mid-Level Functional
Simulation
(e.g., SystemC)

Low-Level Timing
Simulation

(e.g., gem5)

Switch level Switch level

Checkpoint
System State

Checkpoint
System State

Checkpoint

Internal state of a (modeled) system at a given point in time
Allows to start simulation at this point in time
Transformation to initial states of other simulations
Goal: use the most suitable level of abstraction at any point during the simulation

Initialization bias: initial states can have huge impact on simulation results

Motivation Background Approach Conclusion

3/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



High-Level Architectural
Simulation
(e.g., Palladio)

Mid-Level Functional
Simulation
(e.g., SystemC)

Low-Level Timing
Simulation

(e.g., gem5)

Switch level Switch level

Checkpoint
System State

Checkpoint
System State

Checkpoint

Internal state of a (modeled) system at a given point in time
Allows to start simulation at this point in time
Transformation to initial states of other simulations
Goal: use the most suitable level of abstraction at any point during the simulation
Initialization bias: initial states can have huge impact on simulation results

Motivation Background Approach Conclusion

3/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Motivation



“Quick Emulator”
Open-source virtualization software

Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)
Emulation of system and processor architecture allows
to extract system state

QEMU Interfaces
QEMU Machine Protocol (QMP)

JSON-based protocol to control and query QEMU instances
Provides structured commands for automation and
integration
Allows pausing, resuming, and inspecting virtual machines

QEMU Human Monitor (QHM)
Text-based command interface aimed at human readability
Can query detailed runtime information about devices and
CPUs
No defined format for results, requires command-specific
parsing

Extraction of data should be based on these interfaces
and not code modifications to remain valid across
different QEMU versions

Motivation Background Approach Conclusion

4/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Background



“Quick Emulator”
Open-source virtualization software
Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)
Emulation of system and processor architecture allows
to extract system state

QEMU Interfaces
QEMU Machine Protocol (QMP)

JSON-based protocol to control and query QEMU instances
Provides structured commands for automation and
integration
Allows pausing, resuming, and inspecting virtual machines

QEMU Human Monitor (QHM)
Text-based command interface aimed at human readability
Can query detailed runtime information about devices and
CPUs
No defined format for results, requires command-specific
parsing

Extraction of data should be based on these interfaces
and not code modifications to remain valid across
different QEMU versions

Motivation Background Approach Conclusion

4/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Background



“Quick Emulator”
Open-source virtualization software
Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)
Emulation of system and processor architecture allows
to extract system state

QEMU Interfaces
QEMU Machine Protocol (QMP)

JSON-based protocol to control and query QEMU instances
Provides structured commands for automation and
integration
Allows pausing, resuming, and inspecting virtual machines

QEMU Human Monitor (QHM)
Text-based command interface aimed at human readability
Can query detailed runtime information about devices and
CPUs
No defined format for results, requires command-specific
parsing

Extraction of data should be based on these interfaces
and not code modifications to remain valid across
different QEMU versions

Motivation Background Approach Conclusion

4/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Background



“Quick Emulator”
Open-source virtualization software
Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)
Emulation of system and processor architecture allows
to extract system state

QEMU Interfaces
QEMU Machine Protocol (QMP)

JSON-based protocol to control and query QEMU instances
Provides structured commands for automation and
integration
Allows pausing, resuming, and inspecting virtual machines

QEMU Human Monitor (QHM)
Text-based command interface aimed at human readability
Can query detailed runtime information about devices and
CPUs
No defined format for results, requires command-specific
parsing

Extraction of data should be based on these interfaces
and not code modifications to remain valid across
different QEMU versions

Motivation Background Approach Conclusion

4/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Background



QEMU-based Approaches
Checkpoint Extraction for parallelized distributed simulation by Baudis 2013

Extract checkpoints from virtualized systems in QEMU
Modified QEMU source code and QHM commands for data extraction
Checkpoint data deduplication with hashing algorithm

Deterministic replay in QEMU for dynamic analysis by Dovgalyuk 2012
Logging all non-deterministic events in QEMU, deterministic ones are simulated
Targeted at debugging and behavioral analysis rather than simulator coupling

Motivation Background Approach Conclusion

5/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Related Work



QEMU-based Approaches
Checkpoint Extraction for parallelized distributed simulation by Baudis 2013

Extract checkpoints from virtualized systems in QEMU
Modified QEMU source code and QHM commands for data extraction
Checkpoint data deduplication with hashing algorithm

Deterministic replay in QEMU for dynamic analysis by Dovgalyuk 2012
Logging all non-deterministic events in QEMU, deterministic ones are simulated
Targeted at debugging and behavioral analysis rather than simulator coupling

Motivation Background Approach Conclusion

5/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Related Work



gem5-based Approaches

QPoints: Cross-Platform checkpointing from QEMU to gem5 by Godala et al. 2023
Full-system checkpoints from QEMU to gem5, combining fast emulation in QEMU with detailed simulation in gem5 for ARM-based
systems without modifying QEMU
Supports hardware acceleration and multi-core checkpoints, but is limited to 64-bit ARM platforms

Lapidary: Accelerating Checkpoint Creation for gem5 Simulations by Weisse et al. 2019
Creates gem5-compatible checkpoints by attaching to running programs via GDB, capturing register and memory state directly from
bare-metal execution
Greatly reduces initialization time and enables parallel simulations

Motivation Background Approach Conclusion

6/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Related Work



QEMU-based Simulation QMP / QHM Interface Pause / Stop

Extract CPU Registers

Dump Memory

Enumerate Block Devices

Resume / Cont

Extraction

Extract and Format Metadata

Deduplicate Binary Segments

Serialize Metadata

Store Binary Segments

Checkpoint

Formatting Storage

Motivation Background Approach Conclusion

7/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Approach — Overview



QEMU-based Simulation QMP / QHM Interface Pause / Stop

Extract CPU Registers

Dump Memory

Enumerate Block Devices

Resume / Cont

Extraction
System State Extraction from QEMU

Connect to QEMU via QMP and QHM
Pause the VM to ensure consistent
snapshot
Capture CPU registers, memory dumps,
and block device data
Map each device to its corresponding
image file for restoration

Motivation Background Approach Conclusion

7/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Approach — Extraction



Formatting and Storage of extracted system
state

Split extracted data into metadata and binary segments
Store metadata (e.g., registers, configs) as JSON for
portability
Save memory and disk contents as binary files
identified by SHA-256 hashes
Use deduplication to avoid storing identical data across
checkpoints

Extract and Format Metadata

Deduplicate Binary Segments

Serialize Metadata

Store Binary Segments

Checkpoint

Formatting Storage

Motivation Background Approach Conclusion

7/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Approach — Formatting and Storage



Setup

Tested on an AMD Ryzen 9 7900X system with 48 GB
RAM, NVMe SSD storage and Windows 11 Pro
Evaluated using x86 and ARM virtual machines
Workload is the Windows 11 setup (6.6 GiB image, 2
GiB RAM, 4 CPU cores)
Measurements covered pause, extraction, and resume
phases in QEMU

Goals and Results
Correctness of Extraction, Formatting and Storage

All extracted data is stored correctly in the checkpoint
Manual comparison between checkpoint and QEMU
command output
The developed tool correctly extracts CPU registers,
memory dumps, and block device states

Performance
Dominated by checkpointing the RAM
On average Windows checkpoints take 15 seconds

Motivation Background Approach Conclusion

8/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Evaluation



Setup

Tested on an AMD Ryzen 9 7900X system with 48 GB
RAM, NVMe SSD storage and Windows 11 Pro
Evaluated using x86 and ARM virtual machines
Workload is the Windows 11 setup (6.6 GiB image, 2
GiB RAM, 4 CPU cores)
Measurements covered pause, extraction, and resume
phases in QEMU

Goals and Results
Correctness of Extraction, Formatting and Storage

All extracted data is stored correctly in the checkpoint
Manual comparison between checkpoint and QEMU
command output
The developed tool correctly extracts CPU registers,
memory dumps, and block device states

Performance
Dominated by checkpointing the RAM
On average Windows checkpoints take 15 seconds

Motivation Background Approach Conclusion

8/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Evaluation



Threats to validity

Results only manually validated against QEMU’s
internal snapshots
Evaluation focused on a few representative systems
(e.g., Windows 11, small Linux VMs) rather than a
broad benchmark suite
Performance results depend on the NVMe SSD used;
slower storage could increase checkpoint times
Regarding the motivation, only the extraction was
tested, no reinjection or transformation to other
simulators

Limitations of the implementation

Tool written in Java which restricts memory space for
checkpoints to 2GB
Currently supports only standard CPU, RAM, and block
devices — no GPUs, TPMs, or external PCI devices
Checkpoints can be extracted but not yet reloaded into
a running QEMU instance
While deduplication reduces redundancy, large binary
segments can still consume significant disk space
Checkpoint creation speed is limited by storage
throughput, especially for large images

Motivation Background Approach Conclusion

9/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Evaluation



Threats to validity

Results only manually validated against QEMU’s
internal snapshots
Evaluation focused on a few representative systems
(e.g., Windows 11, small Linux VMs) rather than a
broad benchmark suite
Performance results depend on the NVMe SSD used;
slower storage could increase checkpoint times
Regarding the motivation, only the extraction was
tested, no reinjection or transformation to other
simulators

Limitations of the implementation

Tool written in Java which restricts memory space for
checkpoints to 2GB
Currently supports only standard CPU, RAM, and block
devices — no GPUs, TPMs, or external PCI devices
Checkpoints can be extracted but not yet reloaded into
a running QEMU instance
While deduplication reduces redundancy, large binary
segments can still consume significant disk space
Checkpoint creation speed is limited by storage
throughput, especially for large images

Motivation Background Approach Conclusion

9/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Evaluation



Results
Checkpoint extraction tool for QEMU using only
external interfaces (QMP, QHM)

Extract CPU registers, memory, and block devices
Format CPU registers in architecture-agnostic way
Deduplicate binary segments based on hashes to save disk
space

Evaluated correctness and performance on small set
of examples

Future Work
Reimplement the tool in a more performant
programming language
Add support for complex system architectures (e.g.,
GPU, FPGA)
Evaluate the tool with a benchmark
Test the reinjection of checkpoints into QEMU and
other simulators

Contact

Sebastian Weber
sebastian.weber@fzi.de

Motivation Background Approach Conclusion

10/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Conclusion



Results
Checkpoint extraction tool for QEMU using only
external interfaces (QMP, QHM)

Extract CPU registers, memory, and block devices
Format CPU registers in architecture-agnostic way
Deduplicate binary segments based on hashes to save disk
space

Evaluated correctness and performance on small set
of examples

Future Work
Reimplement the tool in a more performant
programming language
Add support for complex system architectures (e.g.,
GPU, FPGA)
Evaluate the tool with a benchmark
Test the reinjection of checkpoints into QEMU and
other simulators

Contact

Sebastian Weber
sebastian.weber@fzi.de

Motivation Background Approach Conclusion

10/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Conclusion



Results
Checkpoint extraction tool for QEMU using only
external interfaces (QMP, QHM)

Extract CPU registers, memory, and block devices
Format CPU registers in architecture-agnostic way
Deduplicate binary segments based on hashes to save disk
space

Evaluated correctness and performance on small set
of examples

Future Work
Reimplement the tool in a more performant
programming language
Add support for complex system architectures (e.g.,
GPU, FPGA)
Evaluate the tool with a benchmark
Test the reinjection of checkpoints into QEMU and
other simulators

Contact

Sebastian Weber
sebastian.weber@fzi.de

Motivation Background Approach Conclusion

10/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Conclusion



[1] Nikolai Baudis. Deduplicating Virtual Machine Checkpoints for Distributed System Simulation. Bachelor’s Thesis.
Karlsruhe Institute of Technology (KIT). 2013. URL:
https://os.itec.kit.edu/downloads/ba_2013_baudis-nikolai_vm-checkpoints.pdf.

[2] Pavel Dovgalyuk. “Deterministic Replay of System’s Execution with Multi-target QEMU Simulator for Dynamic
Analysis and Reverse Debugging.”. In: CSMR. 2012, pp. 553–556.

[3] Bhargav Reddy Godala et al. “QPoints: QEMU to gem5 ARM Full System Checkpointing”. In: gem5 Workshop at
ISCA 2023. 2023. URL:
https://www.gem5.org/assets/files/workshop-isca-2023/posters/qpoints.pdf.

[4] Ofir Weisse et al. “NDA: Preventing Speculative Execution Attacks at Their Source”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-52. Columbus, OH, USA: ACM, 2019,
pp. 572–586. ISBN: 9781450369381. DOI: 10.1145/3352460.3358306. URL:
https://doi.org/10.1145/3352460.3358306.

References

11/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

References

https://os.itec.kit.edu/downloads/ba_2013_baudis-nikolai_vm-checkpoints.pdf
https://www.gem5.org/assets/files/workshop-isca-2023/posters/qpoints.pdf
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306


The HAL4SDV project is co-funded by the Chips Joint Undertaking (Chips JU) and National Authorities under grant
agreement n° 101139789.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or National Authorities. Neither the European Union nor the granting authorities can be held responsible
for them.

References

12/10 4. 11. 2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

Acknowledgements


	Motivation
	Background
	Approach
	Conclusion
	Appendix
	References


