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Motivation
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Switching Levels

m Car simulation on autumn street
m Simulating on E/E-Architecture level
m Change in surface, e.g., wet leaves, requires different

simulation
m Not only on physical level
MULTI_LEVEL SIMULATION m But also increased load on ECUs due to Compensation
calculations
Figure: Abstract view on multiple simuluations on different levels of
granularity.
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Checkpoint

m Internal state of a (modeled) system at a given point in time
m Allows to start simulation at this point in time
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Checkpoint

m Internal state of a (modeled) system at a given point in time

m Allows to start simulation at this point in time

m Transformation to initial states of other simulations

m Goal: use the most suitable level of abstraction at any point during the simulation
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, i Switch level i , Switch level , )
Simulation - Simulation - Simulation
(e.g., Palladio) { (e.g., SystemC) { (e.g., gemb)
| Checkpoint j | Checkpoint J
] System State System State

Checkpoint

m Internal state of a (modeled) system at a given point in time

m Allows to start simulation at this point in time

m Transformation to initial states of other simulations

m Goal: use the most suitable level of abstraction at any point during the simulation
m Initialization bias: initial states can have huge impact on simulation results
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m “Quick Emulator”
m Open-source virtualization software
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Background

m “Quick Emulator”

m Open-source virtualization software

m Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)

m Emulation of system and processor architecture allows
to extract system state
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QEMU Interfaces

m QEMU Machine Protocol (QMP)

m JSON-based protocol to control and query QEMU instances

m Provides structured commands for automation and
integration

m Allows pausing, resuming, and inspecting virtual machines
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Background

QEMU Interfaces

m QEMU Machine Protocol (QMP)
m JSON-based protocol to control and query QEMU instances
m Provides structured commands for automation and
integration
m Allows pausing, resuming, and inspecting virtual machines

m QEMU Human Monitor (QHM)

m Text-based command interface aimed at human readability

m “Quick Emulator”

m Open-source virtualization software m Can query detailed runtime information about devices and
: CPUs
m Supports broad range of processor architectures m No defined format for results, requires command-specific
m Emulation of system and processor architecture allows g Extraction of data should be based on these interfaces
to extract system state and not code modifications to remain valid across

different QEMU versions
Background
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Related Work

QEMU-based Approaches

m Checkpoint Extraction for parallelized distributed simulation by Baudis 2013
m Extract checkpoints from virtualized systems in QEMU
m Modified QEMU source code and QHM commands for data extraction
m Checkpoint data deduplication with hashing algorithm

Background
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Related Work

QEMU-based Approaches

m Checkpoint Extraction for parallelized distributed simulation by Baudis 2013
m Extract checkpoints from virtualized systems in QEMU
m Modified QEMU source code and QHM commands for data extraction
m Checkpoint data deduplication with hashing algorithm

m Deterministic replay in QEMU for dynamic analysis by Dovgalyuk 2012

m Logging all non-deterministic events in QEMU, deterministic ones are simulated
m Targeted at debugging and behavioral analysis rather than simulator coupling

Background
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Related Work

gemb-based Approaches

m QPoints: Cross-Platform checkpointing from QEMU to gem5 by Godala et al. 2023
m Full-system checkpoints from QEMU to gem5, combining fast emulation in QEMU with detailed simulation in gem5 for ARM-based
systems without modifying QEMU
m Supports hardware acceleration and multi-core checkpoints, but is limited to 64-bit ARM platforms
m Lapidary: Accelerating Checkpoint Creation for gem5 Simulations by Weisse et al. 2019
m Creates gem5-compatible checkpoints by attaching to running programs via GDB, capturing register and memory state directly from
bare-metal execution
m Greatly reduces initialization time and enables parallel simulations
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Approach — Overview
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Approach — Extraction

Extraction .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, System State Extraction from QEMU
( |
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(QEMU-based Simulation }- QMP / QHM Interface |+ Pause / Stop | = Pause the VM to ensure consistent
1 | snapshot
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Approach
[ _JeJe)
7/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS e‘ﬁ" ﬂ(IT

FZI



Approach — Formatting and Storage

Formatting and Storage of extracted system Formatting Storage
State N 3
m Split extracted data into metadata and binary segments
m Store metadata (e.g., registers, configs) as JSON for
ol . . . 3 [Extract and Format Metadata]f—{Serialize Metadata]
m Save memory and disk contents as binary files 1 3
identified by SHA-256 hashes } [Deduplicate Binary Segments}»[Store Binary Segments}
m Use deduplication to avoid storing identical data across W 1
checkpoints | | Checkpoint | j
Approach
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Evaluation

m Tested on an AMD Ryzen 9 7900X system with 48 GB
RAM, NVMe SSD storage and Windows 11 Pro

m Evaluated using x86 and ARM virtual machines

m Workload is the Windows 11 setup (6.6 GiB image, 2
GiB RAM, 4 CPU cores)

m Measurements covered pause, extraction, and resume
phases in QEMU

Approach
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Evaluation

Goals and Results

m Tested on an AMD Ryzen 9 7900X system with 48 GB ™ Correctness of Extraction, Formatting and Storage

: m All extracted data is stored correctly in the checkpoint
RAM, NVMe .SSD storage and Wmdows 1 1.Pro m Manual comparison between checkpoint and QEMU
m Evaluated using x86 and ARM virtual machines command output
m Workload is the Windows 11 setup (6.6 GiB image, 2 m The developed tool correctly extracts CPU registers,

memory dumps, and block device states

GiB RAM, 4 CPU cores) m Performance

m Measurements covered pause, extraction, and resume m Dominated by checkpointing the RAM
phases in QEMU m On average Windows checkpoints take 15 seconds
Approach
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Evaluation

Threats to validity

m Results only manually validated against QEMU’s
internal snapshots

m Evaluation focused on a few representative systems
(e.g., Windows 11, small Linux VMs) rather than a
broad benchmark suite

m Performance results depend on the NVMe SSD used;
slower storage could increase checkpoint times

m Regarding the motivation, only the extraction was
tested, no reinjection or transformation to other
simulators

Approach
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Evaluation

Threats to validity Limitations of the implementation

m Results only manually validated against QEMU’s m Tool written in Java which restricts memory space for
internal snapshots checkpoints to 2GB
m Evaluation focused on a few representative systems m Currently supports only standard CPU, RAM, and block
(e.g., Windows 11, small Linux VMs) rather than a devices — no GPUs, TPMs, or external PCI devices
broad benchmark suite m Checkpoints can be extracted but not yet reloaded into
m Performance results depend on the NVMe SSD used:; a running QEMU instance
slower storage could increase checkpoint times m While deduplication reduces redundancy, large binary
m Regarding the motivation, only the extraction was segments can still consume significant disk space
tested, no reinjection or transformation to other m Checkpoint creation speed is limited by storage
simulators throughput, especially for large images
Approach
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Conclusion

m Checkpoint extraction tool for QEMU using only
external interfaces (QMP, QHM)

m Extract CPU registers, memory, and block devices
m Format CPU registers in architecture-agnostic way
m Deduplicate binary segments based on hashes to save disk
space
m Evaluated correctness and performance on small set

of examples
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Conclusion

ol

m Checkpoint extraction tool for QEMU using only m Reimplement the tool in a more performant
external interfaces (QMP, QHM) programming language
m Extract CPU registers, memory, and block devices :
m Format CPU registers in architecture-agnostic way = Add support for complex system architectures (e.g.,

m Deduplicate binary segments based on hashes to save disk GPU, FPGA)

SRS m Evaluate the tool with a benchmark
N Efvaluatecil correctness and performance on small set o 1ast the reinjection of checkpoints into QEMU and
o EGEIRlIEE other simulators
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Conclusion

ol

m Checkpoint extraction tool for QEMU using only m Reimplement the tool in a more performant
external interfaces (QMP, QHM) programming language

m Extract CPU registers, memory, and block devices :
m Format CPU registers in architecture-agnostic way = Add support for complex system architectures (e.g.,

m Deduplicate binary segments based on hashes to save disk GPU, FPGA)

space m Evaluate the tool with a benchmark
m Evaluated correctness and performance on small set m Test the reinjection of checkpoints into QEMU and
of examples other simulators

m Sebastian Weber
m sebastian.weber@fzi.de
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