Generation of
Checkpoints for
Hardware
Architecture
Simulators

Sebastian Weber’, Lars Weber', Thomas WeberT,
Jorg HenB’, Robert Heinrich#

Thomas Weber™ | 4th November 2025

*FZI Research Center for Information Technology
TKarlsruhe Institute of Technology
*UIm University

Motivation

Switching Levels

m Car simulation on autumn street

MULTI-LEVEL SIMULATION

Figure: Abstract view on multiple simuluations on different levels of

granularity.

Motivation

[Jo)

2/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Motivation

(LEVEL1 & = -m'

Switching Levels

m Car simulation on autumn street
m Simulating on E/E-Architecture level
m Change in surface, e.g., wet leaves, requires different

simulation
MULTI-LEVEL SIMULATION
Figure: Abstract view on multiple simuluations on different levels of
granularity.
Motivation
®0
210 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 0"" ﬂ(IT

FZI

Motivation

LEVEL1T = > = |

Switching Levels

m Car simulation on autumn street
m Simulating on E/E-Architecture level
m Change in surface, e.g., wet leaves, requires different

simulation
m Not only on physical level
MULTI_LEVEL SIMULATION m But also increased load on ECUs due to Compensation
calculations
Figure: Abstract view on multiple simuluations on different levels of
granularity.
Motivation
0
210 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS a"' ﬂ(IT

FZI

Motivation

High-Level Architectural | . . [Mid-LeveI Functional | . [Low-LeveI Timing
, i Switch level i , Switch level ,)
Simulation o= Simulation o= Simulation
(e.g., Palladio) { (e.g., SystemC) { (e.g., gemb)
| Checkpoint j | Checkpoint J

System State System State

Checkpoint

m Internal state of a (modeled) system at a given point in time
m Allows to start simulation at this point in time

Motivation
oe
3/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Motivation

High-Level Architectural | . . [Mid-LeveI Functional | . [Low-LeveI Timing
, i Switch level i , Switch level ,)
Simulation - Simulation - Simulation
(e.g., Palladio) { (e.g., SystemC) { (e.g., gemb)
| Checkpoint j | Checkpoint J
] System State System State

Checkpoint

m Internal state of a (modeled) system at a given point in time

m Allows to start simulation at this point in time

m Transformation to initial states of other simulations

m Goal: use the most suitable level of abstraction at any point during the simulation

Motivation
oe
3/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ai" ﬂ(IT

FZI

Motivation

High-Level Architectural | . . [Mid-LeveI Functional | . [Low-LeveI Timing
, i Switch level i , Switch level ,)
Simulation - Simulation - Simulation
(e.g., Palladio) { (e.g., SystemC) { (e.g., gemb)
| Checkpoint j | Checkpoint J
] System State System State

Checkpoint

m Internal state of a (modeled) system at a given point in time

m Allows to start simulation at this point in time

m Transformation to initial states of other simulations

m Goal: use the most suitable level of abstraction at any point during the simulation
m Initialization bias: initial states can have huge impact on simulation results

Motivation
oe
3/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ai" ﬂ(IT

FZI

Background

m “Quick Emulator”
m Open-source virtualization software

Background
[JoJe)
4/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6!"' ﬂ(IT

FZI

Background

m “Quick Emulator”

m Open-source virtualization software

m Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)

m Emulation of system and processor architecture allows
to extract system state

Background
[JoJe)
4/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Background

QEMU Interfaces

m QEMU Machine Protocol (QMP)

m JSON-based protocol to control and query QEMU instances

m Provides structured commands for automation and
integration

m Allows pausing, resuming, and inspecting virtual machines

m “Quick Emulator”

m Open-source virtualization software

m Supports broad range of processor architectures
(e.g., x86, ARM, RISC-V)

m Emulation of system and processor architecture allows
to extract system state

Background
[JoJe)
4/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ai" ﬂ(IT

FZI

Background

QEMU Interfaces

m QEMU Machine Protocol (QMP)
m JSON-based protocol to control and query QEMU instances
m Provides structured commands for automation and
integration
m Allows pausing, resuming, and inspecting virtual machines

m QEMU Human Monitor (QHM)

m Text-based command interface aimed at human readability

m “Quick Emulator”

m Open-source virtualization software m Can query detailed runtime information about devices and
: CPUs
m Supports broad range of processor architectures m No defined format for results, requires command-specific
m Emulation of system and processor architecture allows g Extraction of data should be based on these interfaces
to extract system state and not code modifications to remain valid across

different QEMU versions
Background
[JoJe)

4/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS f;'l ﬂ(IT

Related Work

QEMU-based Approaches

m Checkpoint Extraction for parallelized distributed simulation by Baudis 2013
m Extract checkpoints from virtualized systems in QEMU
m Modified QEMU source code and QHM commands for data extraction
m Checkpoint data deduplication with hashing algorithm

Background
o] Je)
5/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Related Work

QEMU-based Approaches

m Checkpoint Extraction for parallelized distributed simulation by Baudis 2013
m Extract checkpoints from virtualized systems in QEMU
m Modified QEMU source code and QHM commands for data extraction
m Checkpoint data deduplication with hashing algorithm

m Deterministic replay in QEMU for dynamic analysis by Dovgalyuk 2012

m Logging all non-deterministic events in QEMU, deterministic ones are simulated
m Targeted at debugging and behavioral analysis rather than simulator coupling

Background
o] Je)
5/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ai" ﬂ(IT

FZI

Related Work

gemb-based Approaches

m QPoints: Cross-Platform checkpointing from QEMU to gem5 by Godala et al. 2023
m Full-system checkpoints from QEMU to gem5, combining fast emulation in QEMU with detailed simulation in gem5 for ARM-based
systems without modifying QEMU
m Supports hardware acceleration and multi-core checkpoints, but is limited to 64-bit ARM platforms
m Lapidary: Accelerating Checkpoint Creation for gem5 Simulations by Weisse et al. 2019
m Creates gem5-compatible checkpoints by attaching to running programs via GDB, capturing register and memory state directly from
bare-metal execution
m Greatly reduces initialization time and enables parallel simulations

Background
ocoe
6/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Approach — Overview

Extraction

,,

[Resume / Cont}

(QEMU-based Simulation | QMP / QHM Interface || Pause / Stop|

LExtract CPU Registers}

.
[Dump Memory

.

~r

Formatting Sto

,,,

|
|

rage

,,,,,,,,,,,,,,,,

Extract and Format Metadata]f—{Serialize

Metadata}

Deduplicate Binary SegmentsHStore Bina

Yy Segments}

[Enumerate Block Devices:

!

[Chec‘:kpoint]

,,,

Approach
 Jolo}

710 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS

5 KIT

FZI

Approach — Extraction

Extraction .
,,, System State Extraction from QEMU
(|
‘ LResumTe / Cont] 3 m Connect to QEMU via QMP and QHM
(QEMU-based Simulation }- QMP / QHM Interface |+ Pause / Stop | = Pause the VM to ensure consistent
1 | snapshot
[EXtraCt CPU RegiSterS} m Capture CPU registers, memory dumps,
5 If/l } | and block device data
um emor | . . .
L P] 4 | m Map each device to its corresponding
[Enumerate Block Devices} image file for restoration
Approach
[_JeJe)
7/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS e‘ﬁ" ﬂ(IT

FZI

Approach — Formatting and Storage

Formatting and Storage of extracted system Formatting Storage
State N 3
m Split extracted data into metadata and binary segments
m Store metadata (e.g., registers, configs) as JSON for
ol . . . 3 [Extract and Format Metadata]f—{Serialize Metadata]
m Save memory and disk contents as binary files 1 3
identified by SHA-256 hashes } [Deduplicate Binary Segments}»[Store Binary Segments}
m Use deduplication to avoid storing identical data across W 1
checkpoints | | Checkpoint | j
Approach
[_Jole)
710 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS a" ﬂ(IT

FZI

Evaluation

m Tested on an AMD Ryzen 9 7900X system with 48 GB
RAM, NVMe SSD storage and Windows 11 Pro

m Evaluated using x86 and ARM virtual machines

m Workload is the Windows 11 setup (6.6 GiB image, 2
GiB RAM, 4 CPU cores)

m Measurements covered pause, extraction, and resume
phases in QEMU

Approach
o] Jo}

810 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ?;'I ﬂ(IT

Evaluation

Goals and Results

m Tested on an AMD Ryzen 9 7900X system with 48 GB ™ Correctness of Extraction, Formatting and Storage

: m All extracted data is stored correctly in the checkpoint
RAM, NVMe .SSD storage and Wmdows 1 1.Pro m Manual comparison between checkpoint and QEMU
m Evaluated using x86 and ARM virtual machines command output
m Workload is the Windows 11 setup (6.6 GiB image, 2 m The developed tool correctly extracts CPU registers,

memory dumps, and block device states

GiB RAM, 4 CPU cores) m Performance

m Measurements covered pause, extraction, and resume m Dominated by checkpointing the RAM
phases in QEMU m On average Windows checkpoints take 15 seconds
Approach
o] Jeo
8/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Evaluation

Threats to validity

m Results only manually validated against QEMU’s
internal snapshots

m Evaluation focused on a few representative systems
(e.g., Windows 11, small Linux VMs) rather than a
broad benchmark suite

m Performance results depend on the NVMe SSD used;
slower storage could increase checkpoint times

m Regarding the motivation, only the extraction was
tested, no reinjection or transformation to other
simulators

Approach
ooe

9/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS f;'l ﬂ(IT

Evaluation

Threats to validity Limitations of the implementation

m Results only manually validated against QEMU’s m Tool written in Java which restricts memory space for
internal snapshots checkpoints to 2GB
m Evaluation focused on a few representative systems m Currently supports only standard CPU, RAM, and block
(e.g., Windows 11, small Linux VMs) rather than a devices — no GPUs, TPMs, or external PCI devices
broad benchmark suite m Checkpoints can be extracted but not yet reloaded into
m Performance results depend on the NVMe SSD used:; a running QEMU instance
slower storage could increase checkpoint times m While deduplication reduces redundancy, large binary
m Regarding the motivation, only the extraction was segments can still consume significant disk space
tested, no reinjection or transformation to other m Checkpoint creation speed is limited by storage
simulators throughput, especially for large images
Approach
ooe
9/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS a" ﬂ(IT

FZI

Conclusion

m Checkpoint extraction tool for QEMU using only
external interfaces (QMP, QHM)

m Extract CPU registers, memory, and block devices
m Format CPU registers in architecture-agnostic way
m Deduplicate binary segments based on hashes to save disk
space
m Evaluated correctness and performance on small set

of examples

10/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators

FZI, KIT/DSIS

Conclusion
°

5 KIT

FZI

Conclusion

ol

m Checkpoint extraction tool for QEMU using only m Reimplement the tool in a more performant
external interfaces (QMP, QHM) programming language
m Extract CPU registers, memory, and block devices :
m Format CPU registers in architecture-agnostic way = Add support for complex system architectures (e.g.,

m Deduplicate binary segments based on hashes to save disk GPU, FPGA)

SRS m Evaluate the tool with a benchmark
N Efvaluatecil correctness and performance on small set o 1ast the reinjection of checkpoints into QEMU and
o EGEIRlIEE other simulators
Conclusion
o
10/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' ﬂ(IT

FZI

Conclusion

ol

m Checkpoint extraction tool for QEMU using only m Reimplement the tool in a more performant
external interfaces (QMP, QHM) programming language

m Extract CPU registers, memory, and block devices :
m Format CPU registers in architecture-agnostic way = Add support for complex system architectures (e.g.,

m Deduplicate binary segments based on hashes to save disk GPU, FPGA)

space m Evaluate the tool with a benchmark
m Evaluated correctness and performance on small set m Test the reinjection of checkpoints into QEMU and
of examples other simulators

m Sebastian Weber
m sebastian.weber@fzi.de

Conclusion
°

10/10 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS 6»' Q(IT
FZI

References

[1] Nikolai Baudis. Deduplicating Virtual Machine Checkpoints for Distributed System Simulation. Bachelor’s Thesis.
Karlsruhe Institute of Technology (KIT). 2013. URL:
https://o0s.itec.kit.edu/downloads/ba_2013_baudis-nikolai_vm-checkpoints.pdf.

[2] Pavel Dovgalyuk. “Deterministic Replay of System’s Execution with Multi-target QEMU Simulator for Dynamic
Analysis and Reverse Debugging.”. In: CSMR. 2012, pp. 553-556.

[8] Bhargav Reddy Godala et al. “QPoints: QEMU to gem5 ARM Full System Checkpointing”. In: gem5 Workshop at
ISCA 2023. 2023. URL:
https://www.gem5.o0rg/assets/files/workshop-isca-2023/posters/gpoints.pdf.

[4] Ofir Weisse et al. “NDA: Preventing Speculative Execution Attacks at Their Source”. In: Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. MICRO-52. Columbus, OH, USA: ACM, 2019,
pp. 572-586. ISBN: 9781450369381. DOI: 10.1145/3352460.3358306. URL:
https://doi.org/10.1145/3352460.3358306.

References
e)

1110 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ?‘;'I ﬂ(IT

https://os.itec.kit.edu/downloads/ba_2013_baudis-nikolai_vm-checkpoints.pdf
https://www.gem5.org/assets/files/workshop-isca-2023/posters/qpoints.pdf
https://doi.org/10.1145/3352460.3358306
https://doi.org/10.1145/3352460.3358306

Acknowledgements

The HAL4SDV project is co-funded by the Chips Joint Undertaking (Chips JU) and National Authorities under grant
agreement n°101139789.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the
European Union or National Authorities. Neither the European Union nor the granting authorities can be held responsible

for them.
RN Co-funded by . HA|_48|:V
******* the European Union

Systems Safety Security Software

Ghipsyy

References
e

1210 4.11.2025 Thomas Weber: Generation of Checkpoints for Hardware Architecture Simulators FZI, KIT/DSIS ?;'I ﬂ(IT

	Motivation
	Background
	Approach
	Conclusion
	Appendix
	References

