

Detection of Performance Changes in MooBench Results Using Nyrkiö on GitHub Actions

Shinhyung Yang¹ David Georg Reichelt²

Henrik Ingo³

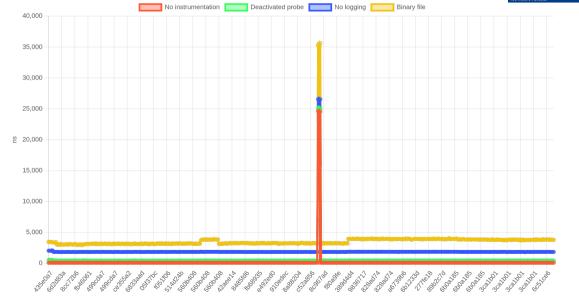
Wilhelm Hasselbring¹

¹Kiel University

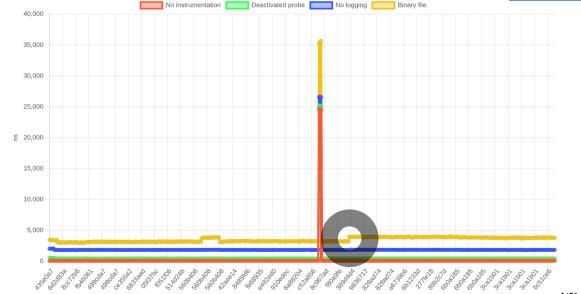
²Lancaster University Leipzig / URZ Leipzig

³Nyrkiö Oy

Nov 4, 2025 SSP 2025, Kiel


Contents

- Problem Statement
- Motivation
- Background
- Experiment & Evaluation
- ► Future Works & Conclusion


Problem Statement

Problem Statement

How We Came to This

- MooBench is deployed on GitHub CI/CD [RJvH24]
- Continuous benchmarking
 - ► MooBench on Jenkins CI/CD¹: run once per week
 - ► MooBench on GitHub CI/CD²: run once per day and by git-push
 - ► Using *github-action-benchmark*³ for continuous visualization
- We manually checked the performance decrease by inspecting the diagram
 - Need for automated regression benchmarking → Nyrkiö
 - Investigate performance regression → Experiments and evaluation

¹ https://kieker-monitoring.net/performance-benchmarks/

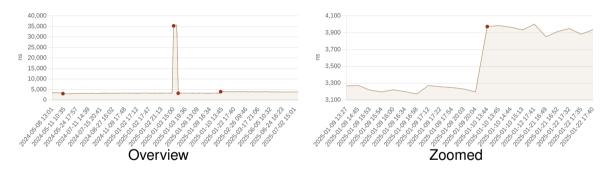
²https://kieker-monitoring.github.io/moobench/dev/bench/

 $^{^3} https://github.com/benchmark-action/github-action-benchmark\\$

Nyrkiö Change Detection Service

Christian-Albrechts-Universität zu Kiel
Technische Fakultät

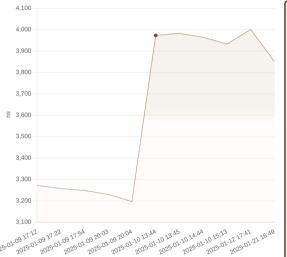
- Change point detection using E-Divisive algorithm [MJ14]
 - Detects change points in the given numerical sequence
- Easy-to-integrate to a GitHub Project's CI/CD as a GH action⁴

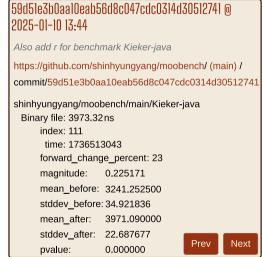

```
uses: nyrkio/change-detection@HEAD
with:
   name: 'Kieker-java'
   tool: 'customSmallerIsBetter'
   output-file-path: output.json
   fail-on-alert: true
   github-token: ${{ secrets.GITHUB_TOKEN }}
   nyrkio-token: ${{ secrets.NYRKIO_JWT_TOKEN }}
   auto-push: true
```

Dashboard service on an own homepage⁵

⁴https://github.com/nyrkio/change-detection 5https://nyrkio.com/frontpage

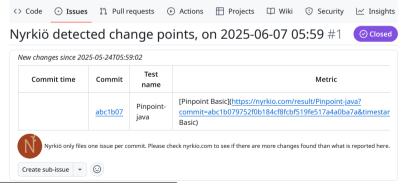
Validate Our Findings with Nyrkiö (1/2)

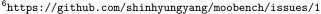




- ► The first three changes were temporary
- The fourth change is permanent

Validate Our Findings with Nyrkiö (2/2)





Nyrkiö for Regression Benchmarking

- ▶ Before Nyrkiö:
 - ▶ All previous data manually uploaded using curl command
- After Nyrkiö:
 - New data automatically uploaded via Nyrkiö
 - ► Nyrkiö notifies regressions as a GH issue⁶ :-)

Investigating Performance Changes (1/2)

▶ What made the performance change?

Ubuntu-latest workflows will use Ubuntu-24.04 image (Sep 17, 2024)^a

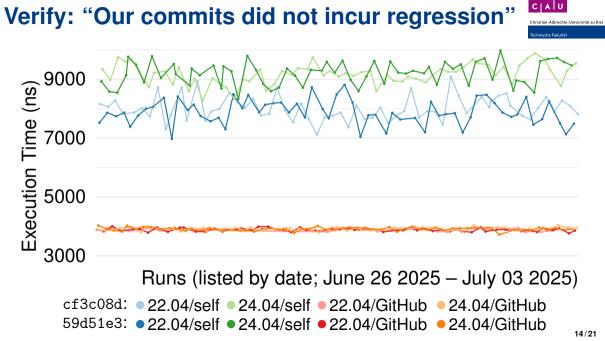
- "This change will be rolled out over a period of several weeks beginning December 5th and will complete on January 17th, 2025."
- ► "R: Removed from the Ubuntu 24.04 image due to maintenance reasons."

- ▶ MooBench uses R software and it was affected by the roll-out of Ubuntu 24.04.
- Most of changes to MooBench around the performance change was to manually install R.

^ahttps://github.com/actions/runner-images/issues/10636

Investigating Performance Changes (2/2)

- ▶ The next step was to find difference between Ubuntu 22.04 and Ubuntu 24.04
 - Set 1: Ubuntu 22.04 on GitHub-hosted VM
 - ► Set 2: Ubuntu 24.04 on GitHub-hosted VM
 - Set 3: Ubuntu 22.04 on self-hosted VM
 - Set 4: Ubuntu 24.04 on self-hosted VM



Also, make sure our software change did not make the change

- ▶ Also, make sure our software change did not make the change
- ► Commit cf3c08d
 - ► Set 1: Ubuntu 22.04 on GitHub
 - ► Set 2: Ubuntu 24.04 on GitHub
 - ► Set 3: Ubuntu 22.04 on self-hosted VM
 - Set 4: Ubuntu 24.04 on self-hosted VM
- Commit 59d51e3
 - ► Set 5: Ubuntu 22.04 on GitHub
 - ► Set 6: Ubuntu 24.04 on GitHub
 - Set 7: Ubuntu 22.04 on self-hosted VM
 - ► Set 8: Ubuntu 24.04 on self-hosted VM

- ► Evaluating Significance of Difference
 - Shapiro-Wilk normality test Check that the two compared data series are normally distributed
 - $ightharpoonup w \approx 1.00$ confirms normalty
 - Paired t-test
 Compare two input data series and check whether their difference is significant
 - ightharpoonup p < 0.05 confirms the difference is significant

24.04/GitHub

24.04/GitHub

w = 0.984860

- Comparing MooBench results:
 - on 2 different git-commits: cf3c08d and 59d51e3
 - on 4 different execution environments: 22.04/self. 24.04/self. 22.04/GitHub. and 24.04/GitHub.

w = 0.983340

- 22.04/self 24.04/self
 - 22.04/self 24.04/self
- p = 0.072288p = 0.647910

w = 0.962460

p = 0.648089p = 0.4884971. All w values are close to 1.00

22.04/GitHub

22.04/GitHub

w = 0.978520

2. All p values are > 0.05

Therefore, the two compared data series are normally distributed.

Therefore, the two compared data series are **not significantly different**.

Validate our assumption: Ubuntu version change incurs this regression

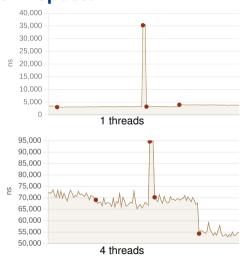
► For the comparison of two Ubuntu versions on each different VM, we used an aggregated data series of cf3c08d and 59d51e3. I.e.,

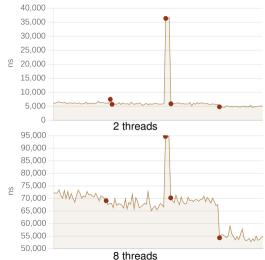
22.04 vs. 24.04:
$$(w,p)$$

- ► GitHub-hosted: (● ●) vs. (● ●): (0.988 280, 0.001,966,284)
- ► Self-hosted: (•) vs. (•): $(0.988590, 1.368, 409 \times 10^{-50})$
- 1. All w values are close to 1.00 Therefore, the two compared data series are normally distributed.
- 2. All p values are < 0.05 Therefore, the two compared data series are significantly different.

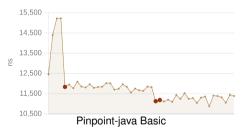
What Are Next Steps?

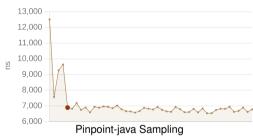
- Find out software changes between
 - ▶ Ubuntu 22.04 and 24.04 versions on
 - GiHub-hosted VMs and
 - self-hosted VMs
 - Linux Kernel versions⁷




Thank you! Any questions?

Regression and Scalability:


Kieker AspectJ



Other Tracing Technologies: Pinpoint

References I

Appendix ▷ ▷ [MJ14]

David S. Matteson and Nicholas A. James, *A nonparametric approach for multiple change point analysis of multivariate data*, Journal of the American Statistical Association **109** (2014), no. 505.

[RJvH24] David Georg Reichelt, Reiner Jung, and André van Hoorn, *Overhead measurement noise in different runtime environments*, SSP '24, 2024, PID: 20.500.12116/45533.